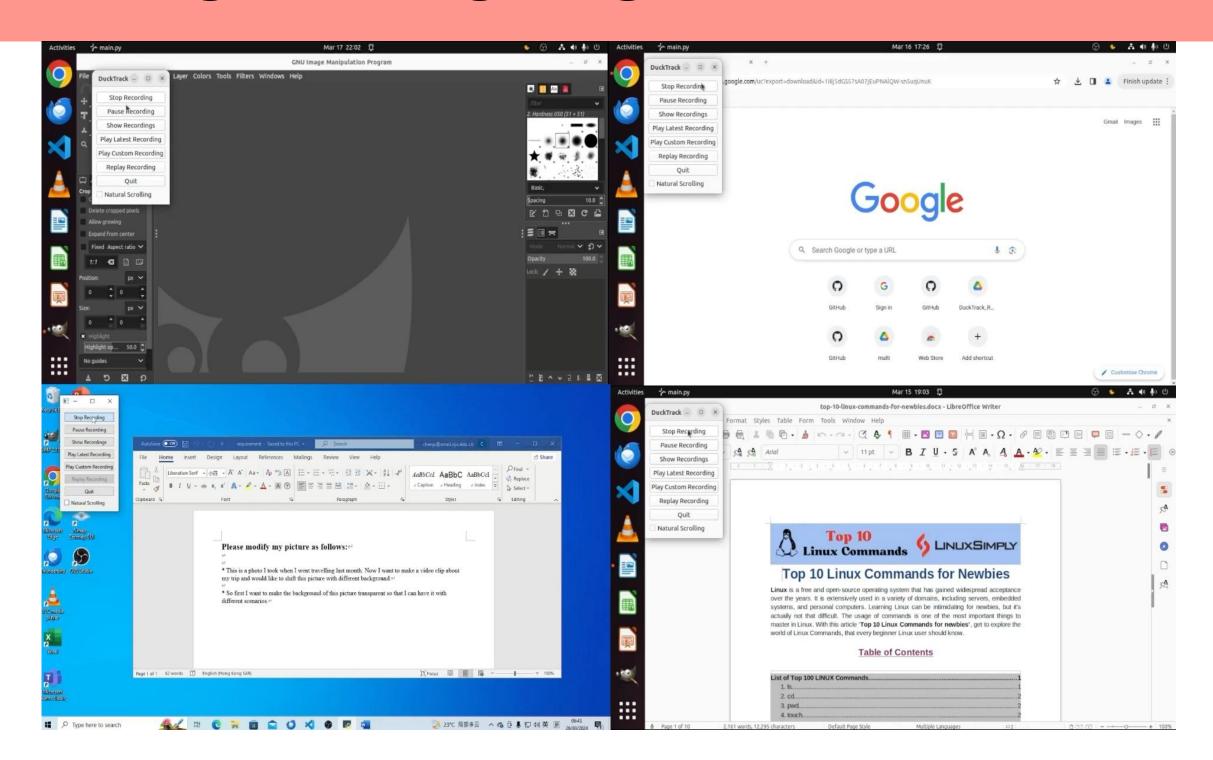
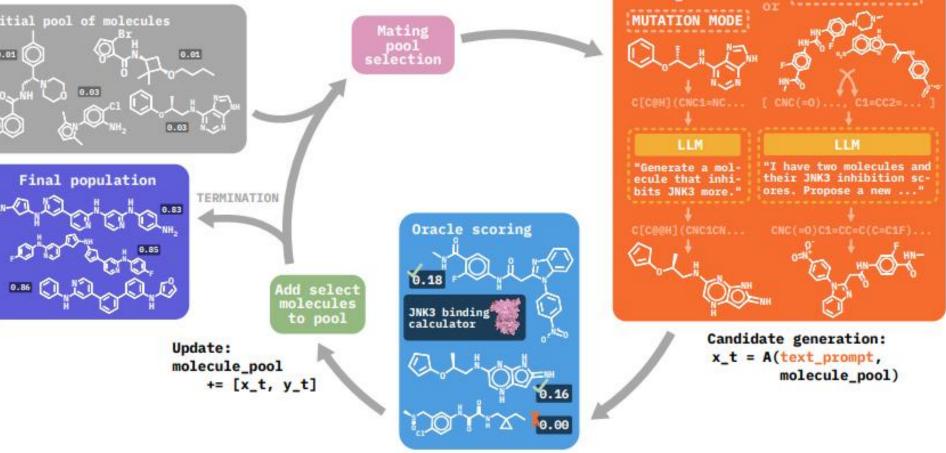
Large Language Model-augmented Optimization and Decision Programs

Large Language Models are Changing Everything!



Web agent



Black-box oracle: $y_t = f(x_t)$

Molecule optimization

Do Large Language Models Understand Chemistry?

Table 2: The rank of fi competitive, C: competit

GPT-4

2

2

1.25

GPT-

2.37

Task

Name Prediction

Yield Prediction

Property Prediction

Reaction Prediction

Reagents Selection

Retrosynthesis

Average rank

Molecule Design

Molecule Captioning

•	Literature Review : GPT-4 possesses extens
	such as density functional theory, Feynman dia
	theory, molecular dynamics simulations, and m

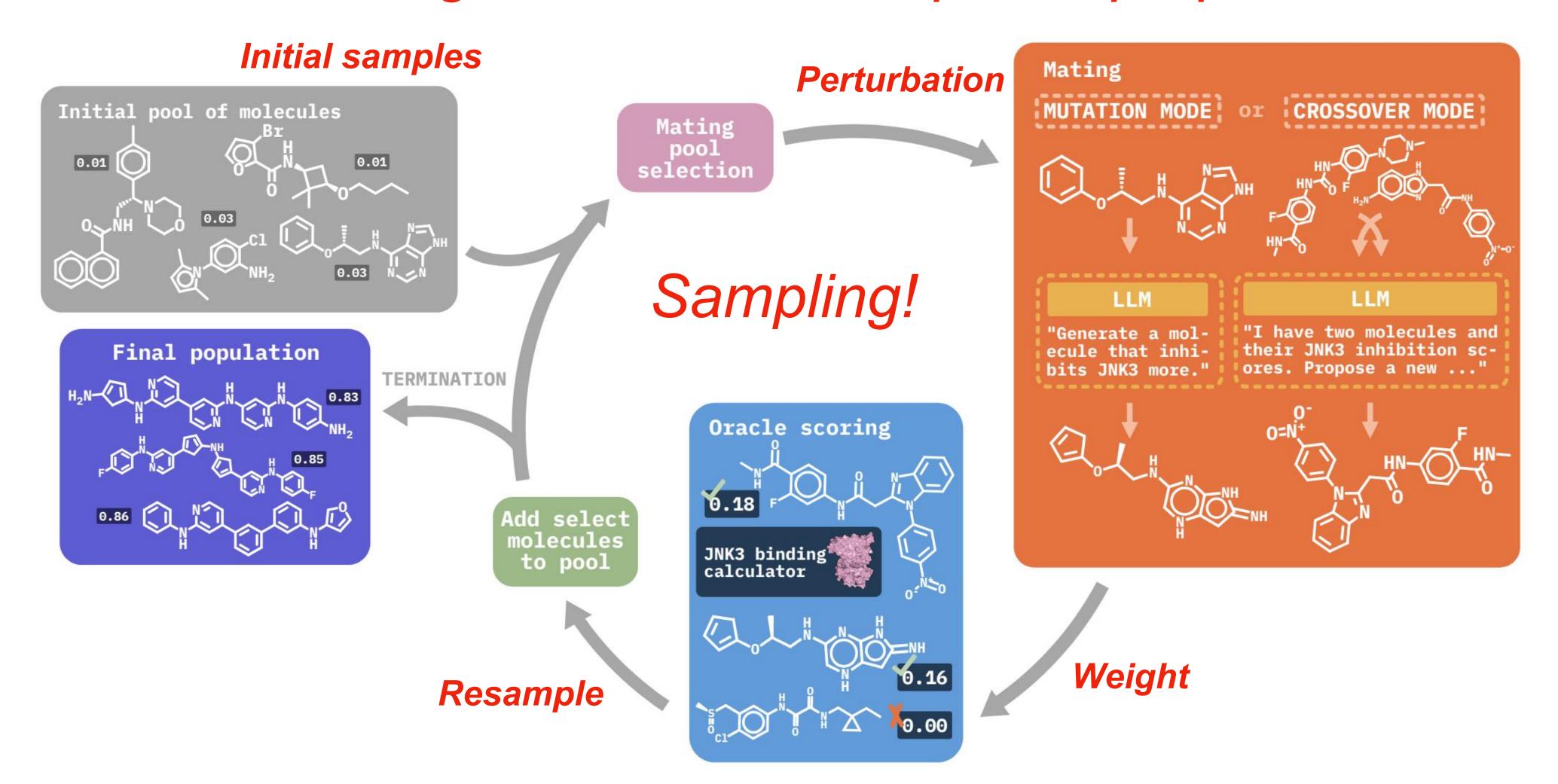
- Code Development: GPT-4 is able to assist existing computational chemistry and physics:
- Method Selection: GPT-4 is able to recomm for specific research problems, taking into acc theory.
- Simulation Setup: GPT-4 is able to aid in presuggesting simulation parameters, including specifically.
- **Experimental, Computational, and Theoretical Guidance**: GPT-4 is able to assist rese experimental, computational, and theoretical guidance.
- **** Hallucinations:** GPT-4 may occasionally generate incorrect information. It may struggle reasoning. Researchers need to independently verify and validate outputs and suggestion
- ****Raw Atomic Coordinates**: GPT-4 is not adept at generating or processing raw atomic c complex molecules or materials. However, with proper prompts that include molecular for supporting information, GPT-4 may still work for simple systems.
- **Precise Computation**: GPT-4 is not proficient in precise calculations in our evaluated be usually ignores physical priors such as symmetry and equivariance/invariance. Currently, to numbers returned by GPT-4 may come from a literature search or few-shot examples. It is GPT-4 with specifically designed scientific computation packages or machine learning moderate and DiG.
- WHands-on Experience: GPT-4 can only provide guidance and suggestions but cannot c
 experiments or run simulations. Researchers will need to set up and execute simulations c
 themselves or leverage other frameworks based on GPT-4, such as AutoGPT, HuggingGF
 on.

Table 3. Experimental results in terms of accuracy (%) on the textbook dataset. The best performing score is highlighted in **bold** and second-best is underlined. The average score is weighted by the number of problems in each textbook.

M- 1-1		Physics			Math			A				
Model	atkins	chemmc	quan	matter	fund	class	thermo	diff	stat	calc	Avg.	
Zero-Shot Learning												
LLaMA-2-7B	0.00	0.00	0.00	0.00	1.37	0.00	0.00	2.00	5.33	0.00	1.03	
LLaMA-2-70B	1.87	2.56	0.00	0.00	1.40	0.00	0.00	0.00	10.70	4.76	2.41	
Mistral-7B	9.35	5.13	8.82	4.08	5.48	2.13	0.00	4.00	12.00	2.38	6.23	
Claude2	15.00	12.83	14.71	10.20	12.33	6.40	9.00	4.00	38.70	16.70	14.94	
GPT-3.5-Turbo	4.67	20.51	8.82	2.04	10.96	2.13	2.94	6.00	28.00	9.30	9.59	
GPT-4	45.79	28.21	26.47	22.45	23.29	25.53	17.91	32.00	49.33	54.76	33.79	
GPT-4-Turbo	57.01	41.03	35.29	26.53	24.66	21.28	26.87	46.00	61.33	52.38	40.99	
Zero-Shot Learning + CoT Prompting												
LLaMA-2-7B	0.00	2.56	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.67	
LLaMA-2-70B	0.93	2.56	0.00	0.00	0.00	0.00	1.49	0.00	10.70	0.00	1.89	
Mistral-7B	6.54	5.13	2.94	0.00	0.00	2.12	1.49	6.00	10.67	9.52	4.63	
Claude2	20.56	15.38	8.82	4.08	8.23	4.26	5.97	6.00	36.00	14.29	13.89	
GPT-3.5-Turbo	6.54	23.08	2.94	10.20	12.33	2.12	5.97	12.00	33.33	9.30	12.17	
GPT-4	28.04	43.59	14.71	20.41	21.92	19.15	17.91	22.00	50.67	42.86	28.52	
GPT-4-Turbo	60.75	35.90	29.41	28.57	30.14	31.91	25.37	38.00	64.00	54.76	42.37	
			Few-S	Shot Learni	ng + Co	T Prompt	ing					
LLaMA-2-7B	1.87	5.13	2.94	0.00	5.48	0.00	0.00	0.00	12.00	7.14	3.60	
LLaMA-2-70B	13.10	12.83	14.71	4.08	12.33	0.00	0.00	0.00	13.30	9.52	8.40	
Mistral-7B	6.54	10.26	2.94	2.04	2.74	2.13	4.48	4.00	14.67	9.52	6.17	
Claude2	15.89	25.64	14.65	6.12	9.59	6.38	10.45	8.00	33.33	19.05	15.26	
GPT-3.5-Turbo	8.41	20.51	8.82	6.12	10.96	2.12	1.49	10.00	38.67	6.98	11.99	
GPT-4	41.12	33.33	17.65	16.33	17.81	17.02	20.90	30.00	49.33	45.24	30.36	
GPT-4-Turbo	59.81	35.90	26.47	18.37	23.29	19.15	32.84	32.00	65.33	50.00	39.45	
			F	ew-Shot Le	arning +	- Python						
LLaMA-2-7B	0.93	2.56	0.00	0.00	0.00	0.00	0.00	0.00	6.67	0.00	1.20	
LLaMA-2-70B	0.93	7.69	2.94	0.00	9.59	0.00	1.49	0.00	17.30	9.52	5.14	
Mistral-7B	4.67	0.00	5.88	2.04	2.74	2.13	0.00	4.00	17.33	11.90	5.32	
Claude2	6.54	12.82	14.71	4.08	17.81	8.51	5.97	20.00	40.00	16.67	14.92	
GPT-3.5-Turbo	13.08	33.33	8.82	16.33	26.01	4.26	7.46	16.00	44.00	26.19	19.91	
GPT-4	57.01	38.46	44.12	34.69	28.77	23.40	34.33	44.00	68.00	38.10	43.22	
GPT-4-Turbo	32.71	33.33	17.65	26.53	27.40	12.76	16.42	34.00	42.67	30.95	28.47	

Large Language Models as Samplers

Goal: "extract knowledge" from LLMs -> ill-defined! Reframed as: finding molecules with optimal properties

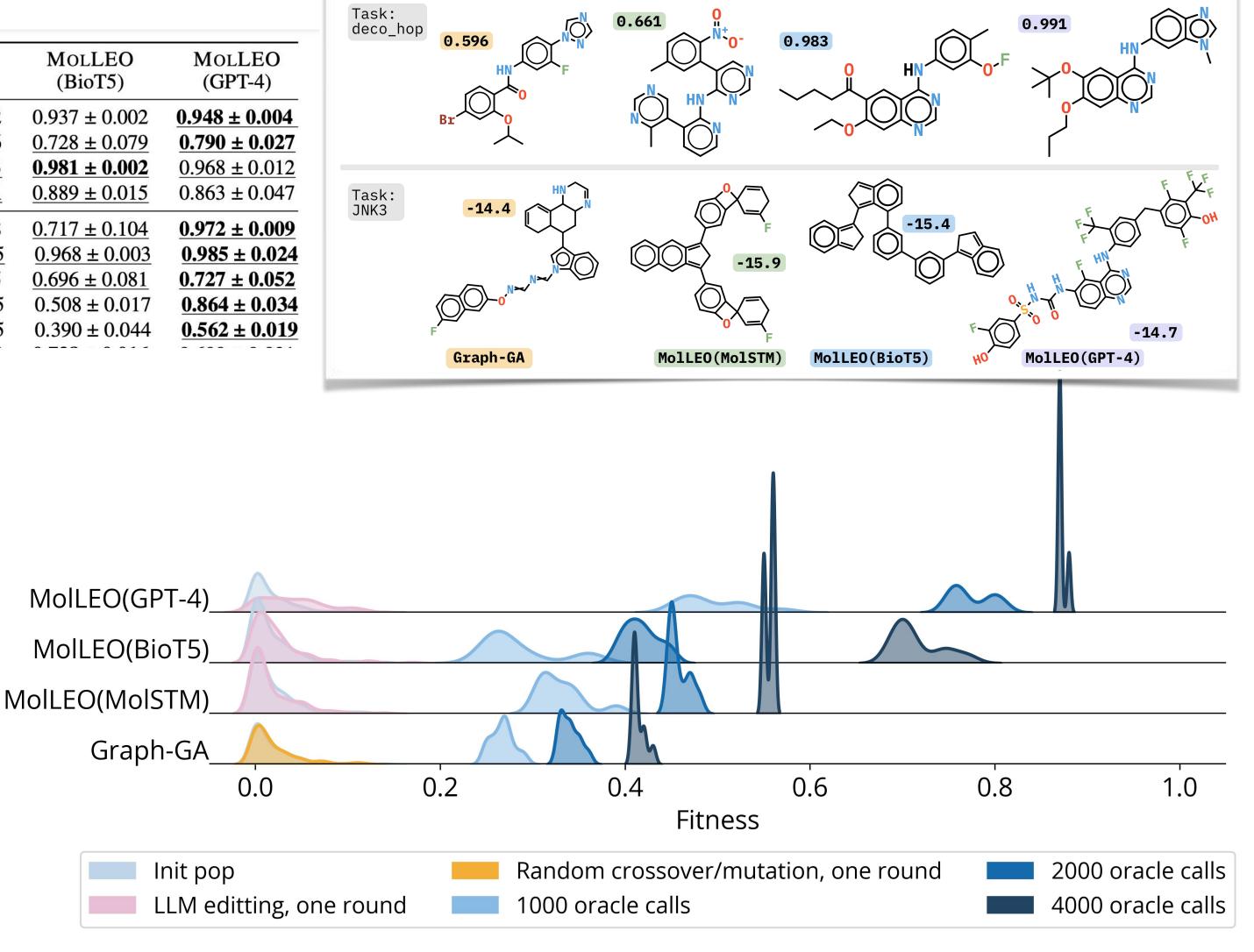


Large Language Models for Molecular Optimization

SOTA on 23 tasks! Beat 25 strong baselines!

og.					
Task type	Method objective (†)	REINVENT	Graph GA	GP BO	MOLLEO (MolSTM)
	QED	0.941 ± 0.000	0.940 ± 0.000	0.937 ± 0.000	0.937 ± 0.002
Property	JNK3	0.783 ± 0.023	0.553 ± 0.136	0.564 ± 0.155	0.643 ± 0.226
optimization	DRD2	0.945 ± 0.007	0.964 ± 0.012	0.923 ± 0.017	0.975 ± 0.003
	$GSK3\beta$	0.865 ± 0.043	0.788 ± 0.070	0.851 ± 0.041	0.898 ± 0.041
	mestranol_similarity	0.618 ± 0.048	0.579 ± 0.022	0.627 ± 0.089	0.596 ± 0.018
Name has d	albuterol_similarity	0.896 ± 0.008	0.874 ± 0.020	0.902 ± 0.019	0.929 ± 0.005
Name-based	thiothixene_rediscovery	0.534 ± 0.013	0.479 ± 0.025	0.559 ± 0.027	0.508 ± 0.035
optimization	celecoxib_rediscovery	0.716 ± 0.084	0.582 ± 0.057	0.728 ± 0.048	0.594 ± 0.105
	troglitazone_rediscovery	0.452 ± 0.048	0.377 ± 0.010	0.405 ± 0.007	0.381 ± 0.025
	perindopril_mpo	0.537 ± 0.016	0.538 ± 0.009	0.493 ± 0.011	$0.554 \pm 0.03^{-}$
	ranolazine_mpo	0.760 ± 0.009	0.728 ± 0.012	0.735 ± 0.013	0.725 ± 0.04
	sitagliptin_mpo	0.021 ± 0.003	0.433 ± 0.075	0.186 ± 0.055	0.548 ± 0.06
	amlodipine_mpo	0.642 ± 0.044	0.625 ± 0.040	0.552 ± 0.025	0.674 ± 0.01
	fexofenadine_mpo	0.769 ± 0.009	0.779 ± 0.025	0.745 ± 0.009	0.789 ± 0.01
	osimertinib_mpo	0.834 ± 0.046	0.808 ± 0.012	0.762 ± 0.029	0.823 ± 0.00
	zaleplon_mpo	0.347 ± 0.049	0.456 ± 0.007	0.272 ± 0.026	0.475 ± 0.01
	median1	0.372 ± 0.015	0.287 ± 0.008	0.325 ± 0.012	0.298 ± 0.01
	median2	0.294 ± 0.006	0.229 ± 0.017	0.308 ± 0.034	0.251 ± 0.03
Structure-	isomers_c7h8n2o2	0.842 ± 0.029	0.949 ± 0.036	0.662 ± 0.071	0.948 ± 0.03
based	isomers_c9h10n2o2pf2cl	0.642 ± 0.054	0.719 ± 0.047	0.469 ± 0.180	0.871 ± 0.03
optimization	deco_hop	0.666 ± 0.044	0.619 ± 0.004	0.629 ± 0.018	0.613 ± 0.01
	scaffold_hop	0.560 ± 0.019	0.517 ± 0.007	0.548 ± 0.019	0.527 ± 0.01
	valsartan_smarts	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.00
	Total (†)	14.036	13.823	13.182	14.557
	Rank (↓)	4	5	6	3

Table 1: Top-10 AUC of single-objective tasks. The best model for each to three are underlined. We also report the sum of all tasks (total) and the rank



Large Language Models for Molecular Optimization

Optimize initial pool

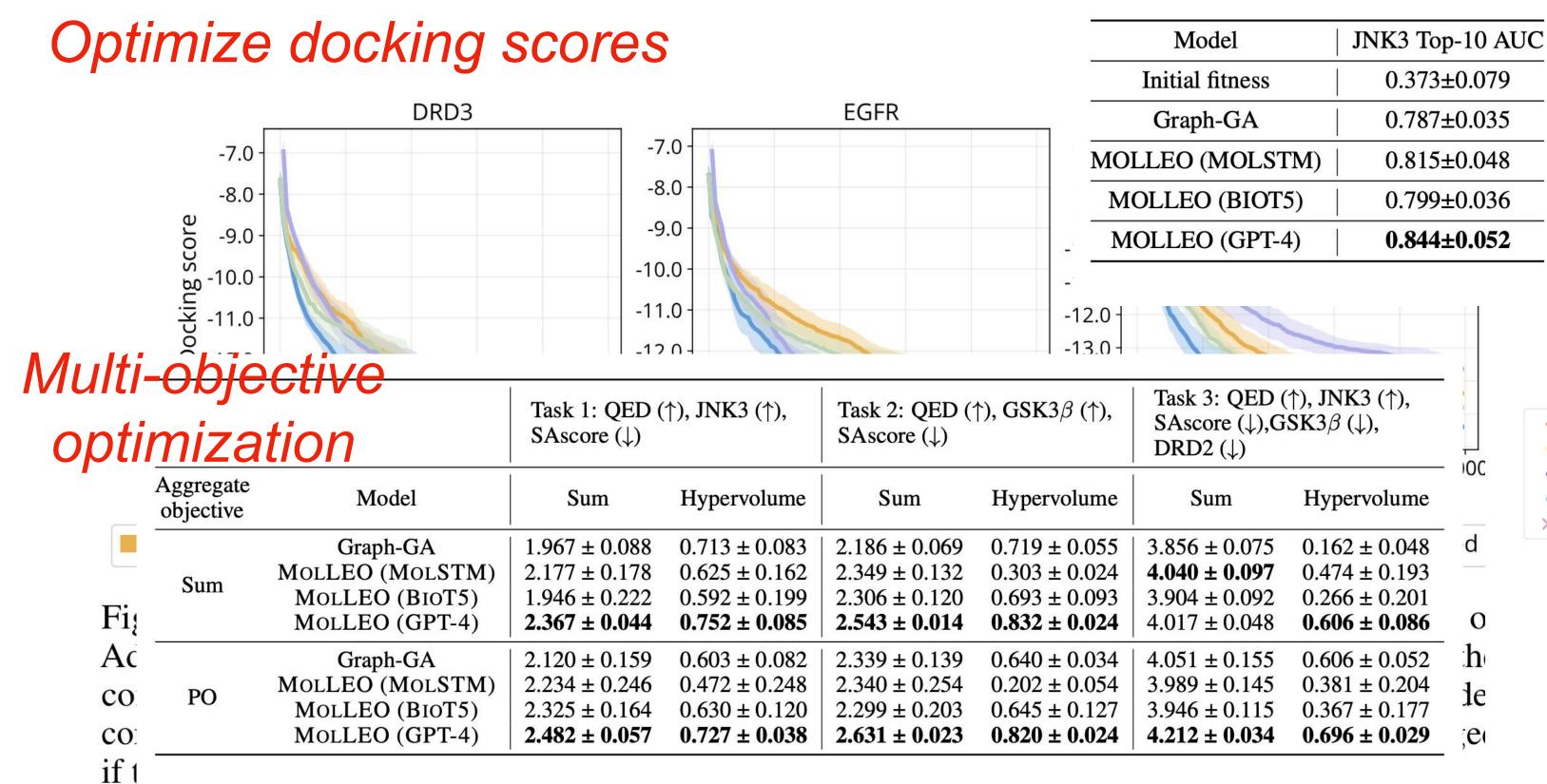
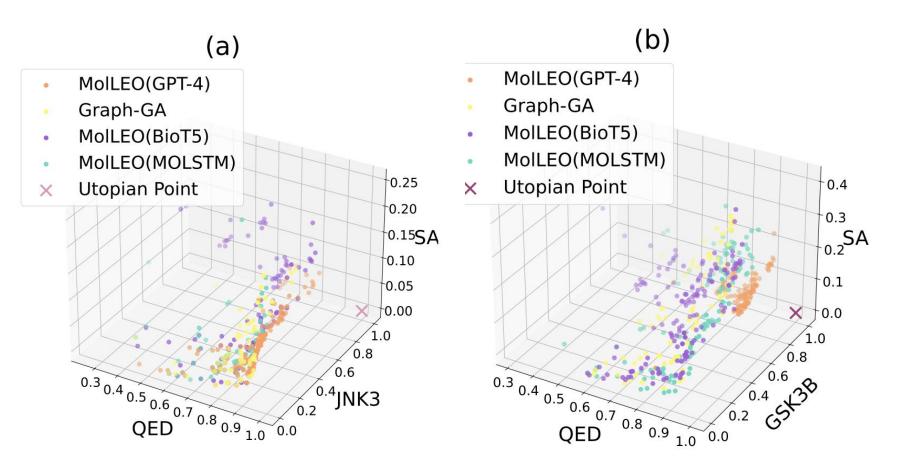


Table 2: Summation and hypervolume scores of multi-objective tasks. We report the results for two aggregation methods: Summation (Sum) and Pareto optimality (PO). The best model for each task is bolded.

Table 3: Initializing MOLLEO with the best molecules from ZINC 250K [67]. The results of three different LLMs in MOLLEO and Graph-GA are compared. For all molecules in ZINC 250K, we run the JNK3 oracle and select the top 120 molecule pool. We run MOLLEO initializing from this pool of molecules and optimizing JNK3. We report the top-10 AUC on the output of MOLLEO. See the description of the models in the text.

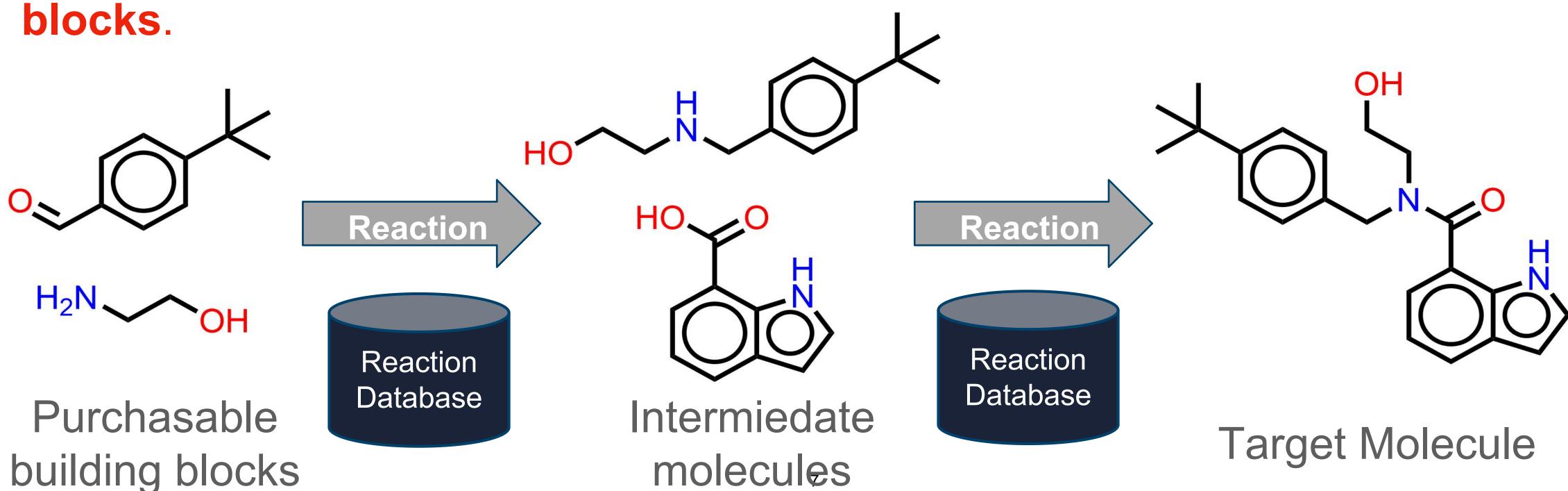


Retrosynthesis Planning

Complex reasoning: Can LLMs generate synthetic routes for a given molecule?

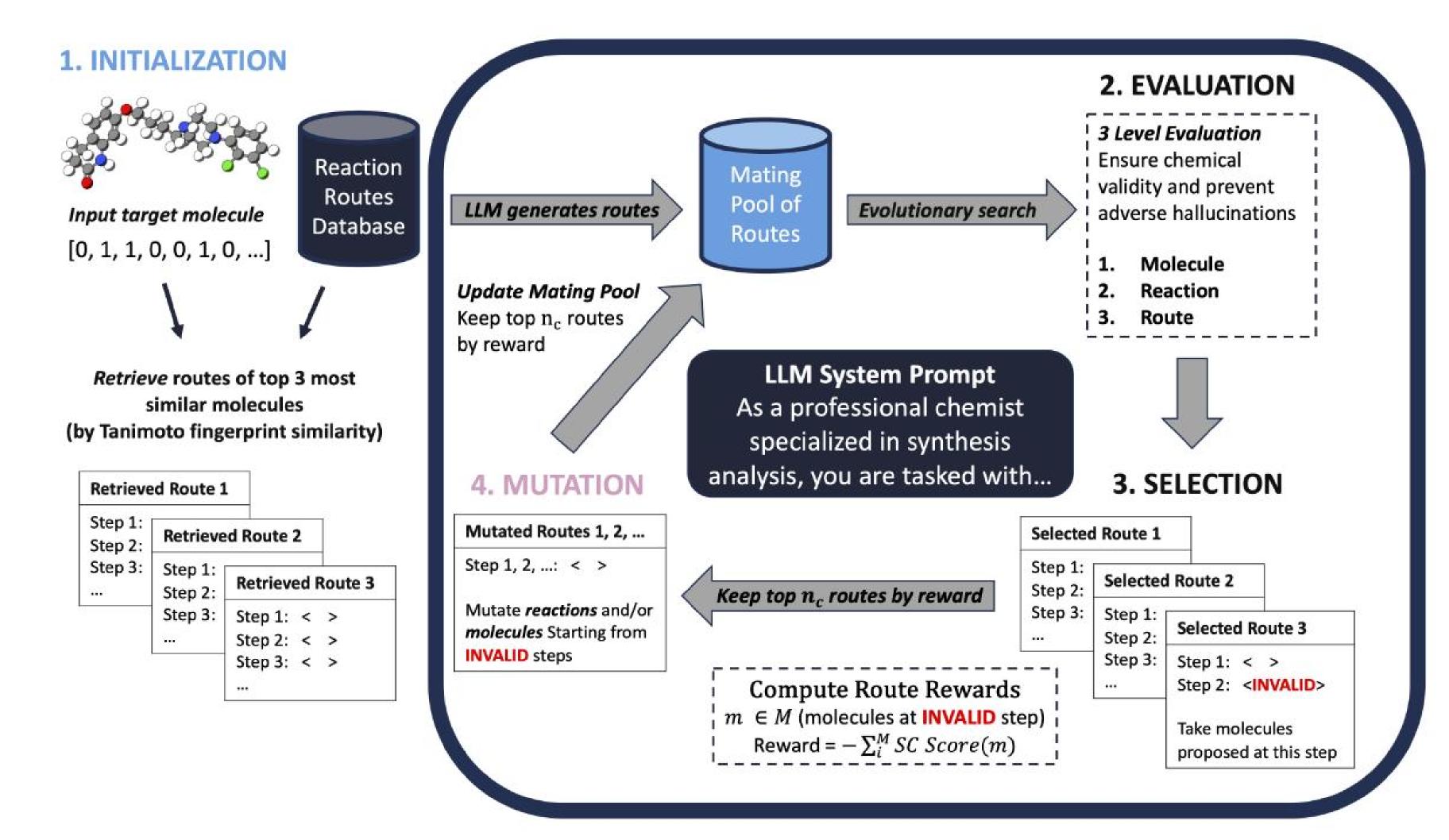
With reaction template set R and purchasable building blocks set C

Retrosynthesis planning: a sequential decision-making process, starting from the target molecule and ending with a set of purchasable building



Retrosynthesis Planning

LLM-Syn-Planner



Retrosynthesis Planning

LLM-Syn-Planner achieve comparable performance compared with specialized models

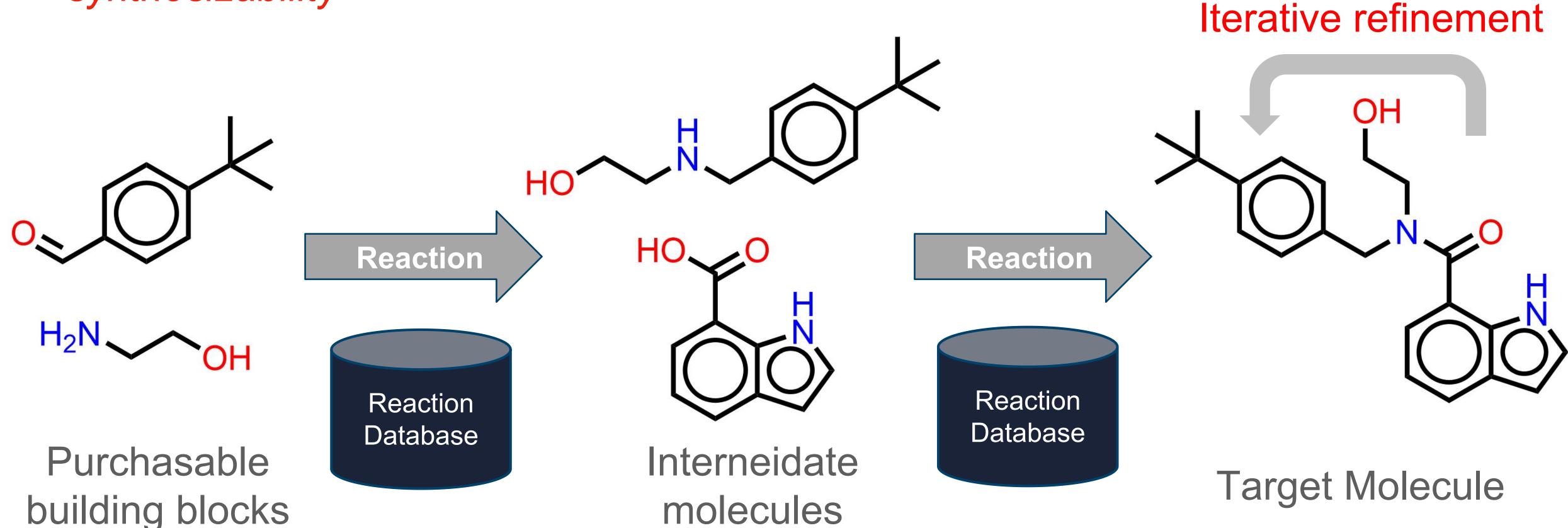
	Solve Rate (%)			USPTO-190 Solve Rate (%)			Pistachio Reachable Solve Rate (%)			Pistachio Hard Solve Rate (%)		
Algorithm												
	N=100	300	500	N=100	300	500	N=100	300	500	N=100	300	500
Graph2Edits(MCTS)	90.0	93.5	95.5	42.7	54.7	60.5	77.3	88.4	94.2	26.0	41.0	59.0
RootAligned(MCTS)	98.0	98.0	98.0	79.4	79.4	79.4	99.3	99.3	99.3	83.0	83.0	83.0
LocalRetro(MCTS)	92.5	94.5	95.5	44.3	50.9	58.3	86.7	90.0	95.3	52.0	55.0	62.0
Graph2Edits(Retro*)	92.0	95.5	97.0	51.1	59.4	78.5	94.0	95.0	95.5	71.0	74.0	79.0
RootAligned(Retro*)†	99.0	99.0	99.0	86.8	86.8	86.8	98.7	98.7	98.7	78.0	78.0	78.0
LocalRetro(Retro*)	95.5	97.5	98.0	51.0	65.8	73.7	97.3	99.3	99.3	63.0	69.0	72.0
LLM(MCTS)	54.5	68.5	75.5	25.8	27.2	31.3	12.7	17.3	20.7	0.0	4.0	5.0
LLM(Retro*)	56.0	69.0	75.5	23.2	26.8	30.6	14.7	19.3	13.3	0.0	2.0	5.0
LLM-Syn-Planner	91.0	98.0	98.5	64.7	70.0	80.5	93.3	94.7	96.7	72.0	73.0	80.0

Baselines: Combine single-step specialized models with searching algorithms

LLM doesn't work well as a single-step retrosynthesis-predictor

Retrosynthesis design

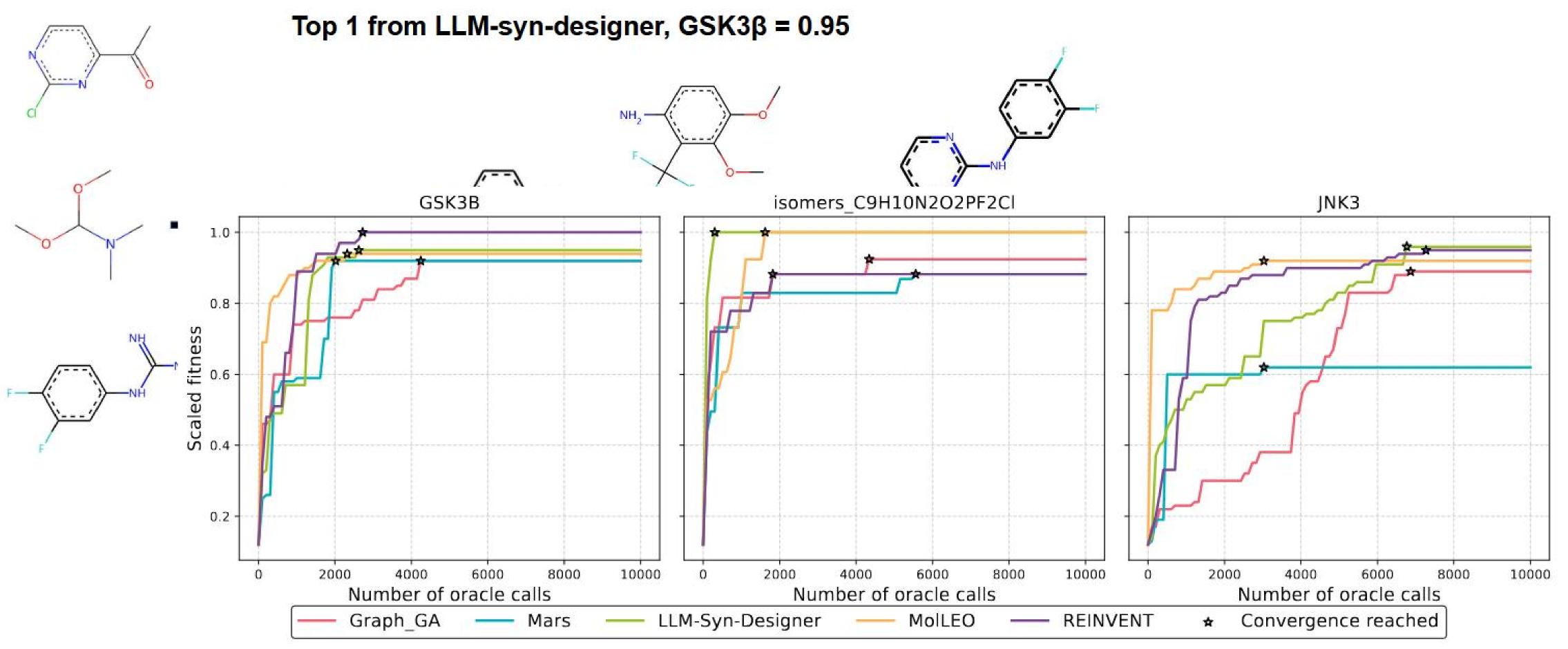
LLM-Syn-Designer: Optimize molecules towards a given property while keeping synthesizability



Combining MolLEO and LLM-Syn-Planner together: filter out molecules with SC score > 3 in each iteration

Retrosynthesis design

LLM-Syn-Designer: Optimize molecules towards a given property while keeping synthesizability



Thank you for listening!

Codes are all public! Questions and discussions! hwang984@gatech.edu

Thanks to Yuanqi Du for providing parts of the content and valuable suggestions for this presentation.