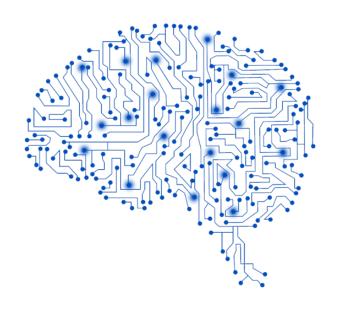
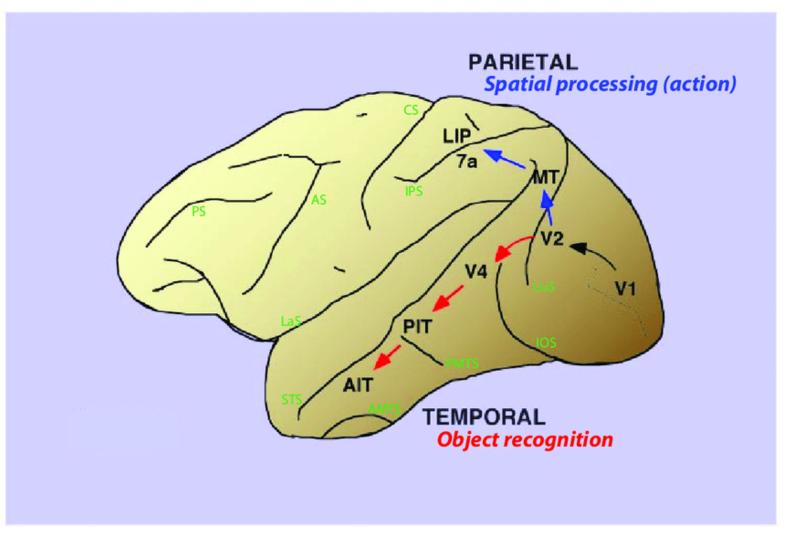
Diffusion-Based Discovery of Semantic Latent Groups in Higher Visual Cortex



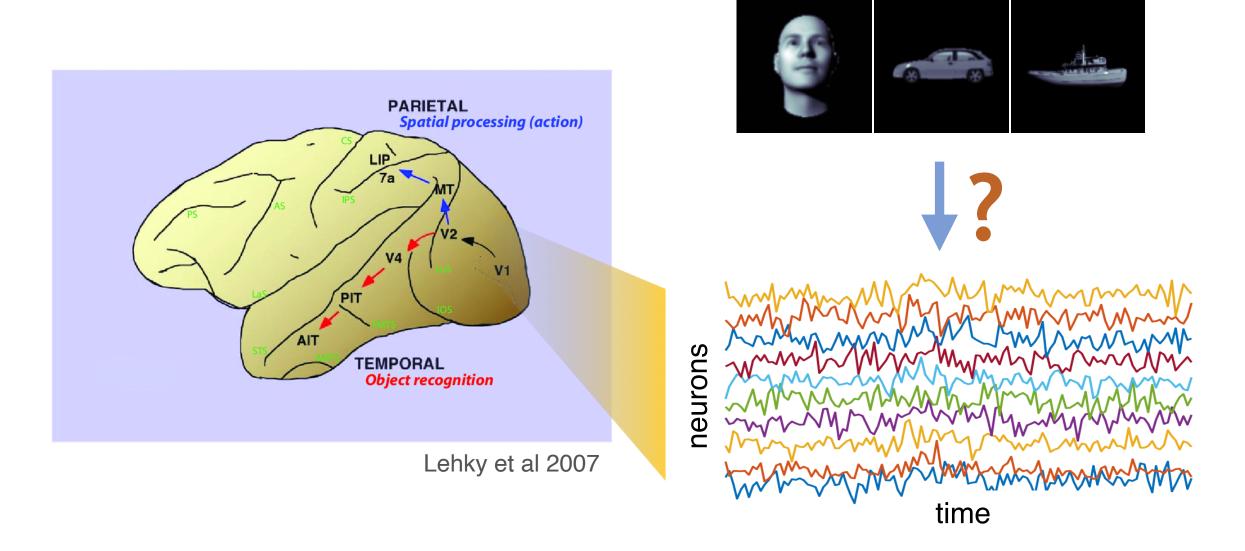
Anqi Wu

School of Computational Science and Engineering Georgia Institute of Technology **Goal:** Understanding how neural populations in higher visual areas encode object-centered visual information

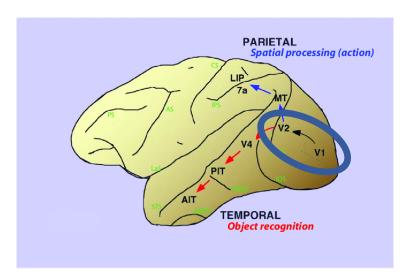


Lehky et al 2007

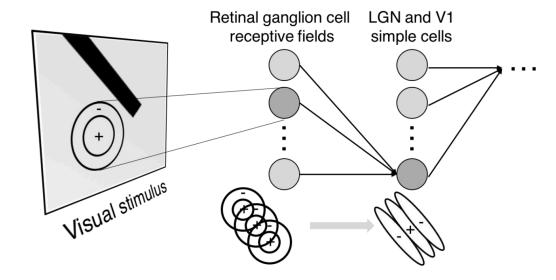
Goal: Understanding how neural populations in higher visual areas encode object-centered visual information



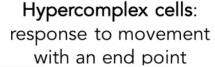
Goal: Understanding how neural populations in higher visual areas encode object-centered visual information



Lehky et al 2007



Complex cells:
Response to light
orientation and movement



No response

Response (end point)

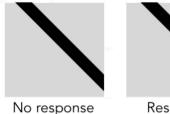
Retinal ganglion cell LGN and V1 receptive fields simple cells

Complex cells:

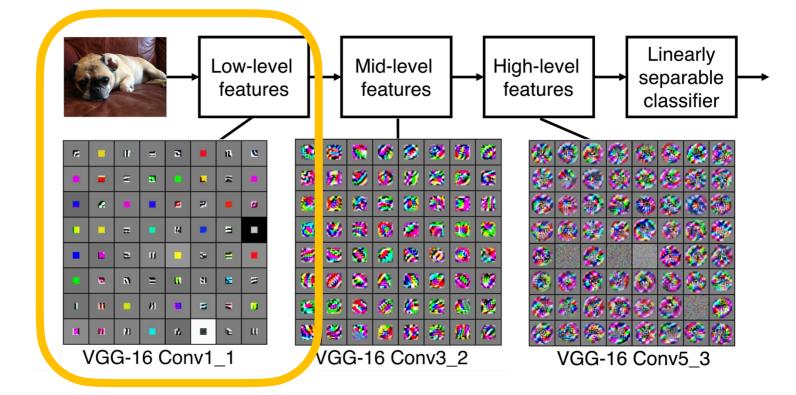
Response to light orientation and movement

Hypercomplex cells:

response to movement with an end point



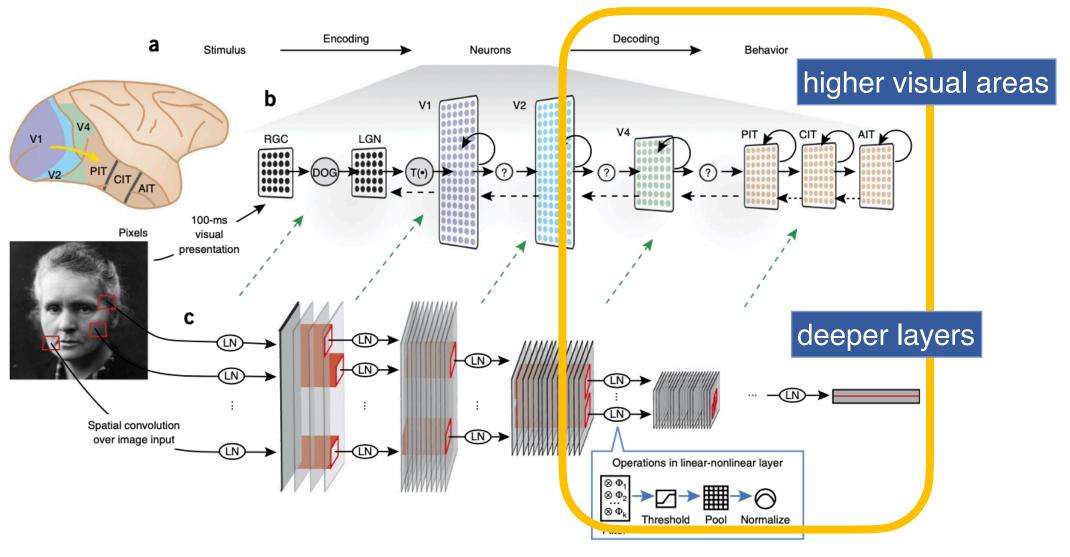
response Response (end point)



CNN

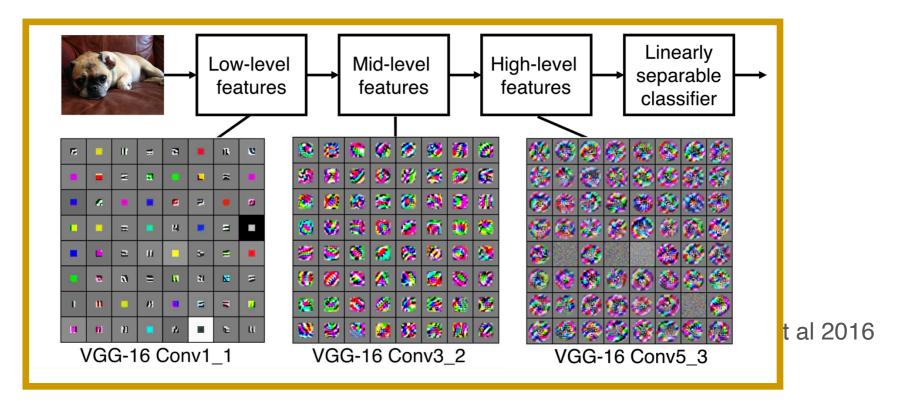
visual

Representation alignment between CNN and neurons



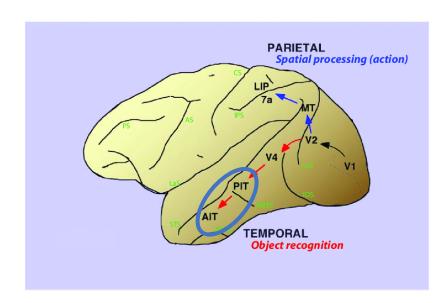
Yamins et al 2016

Drawbacks

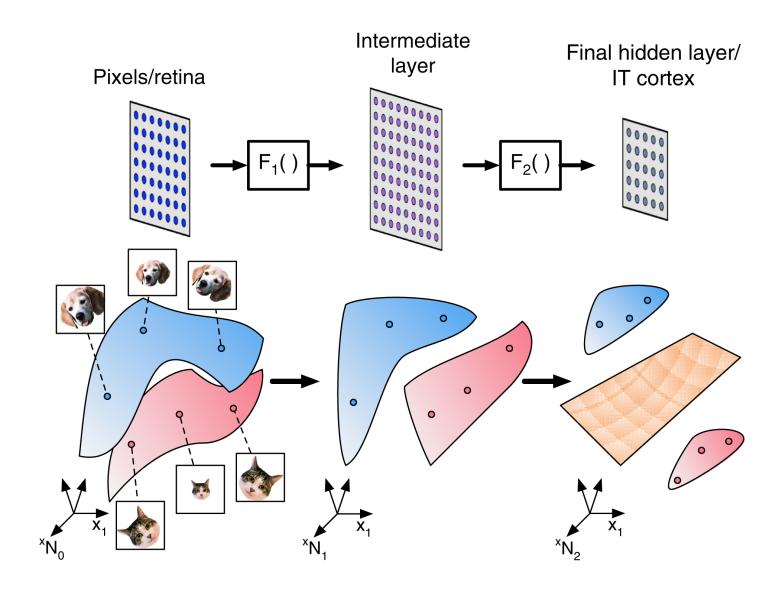


- Artificial neurons are not direct models of biological ones.
- Even with artificial neurons, particularly in deeper layers, interpreting what individual neurons selectively respond to remains challenging.
- Which neurons encode what: size, rotation, object shape, identity, or other semantic attributes?

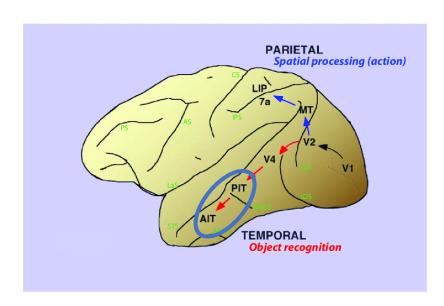
Higher visual areas: IT (Inferior Temporal cortex)



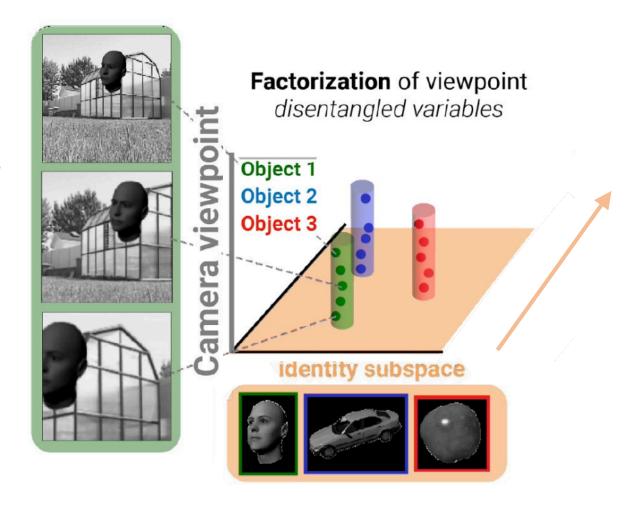
 Focuses on object identity classification, not disentangling continuous attributes (pose, lighting, texture)



Higher visual areas: IT (Inferior Temporal cortex)

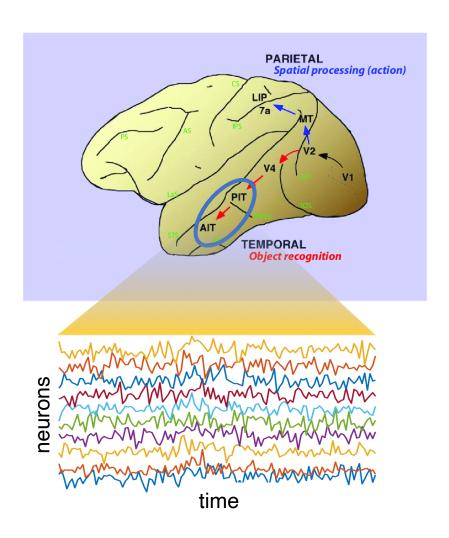


- Focuses on coarse factors (pose, viewpoint, lighting, background, identity), not richer attributes (texture, shape, semantic features).
- Relies on CNN alignment, assuming CNNs inherently disentangle representations.

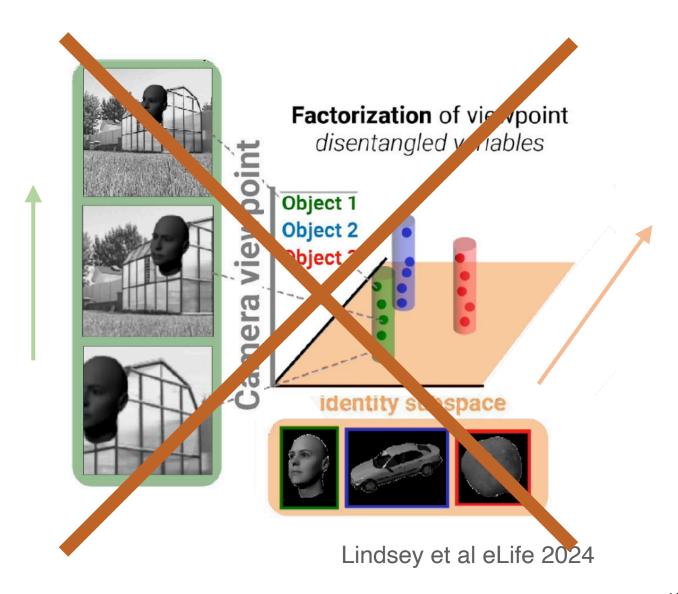


Lindsey et al eLife 2024

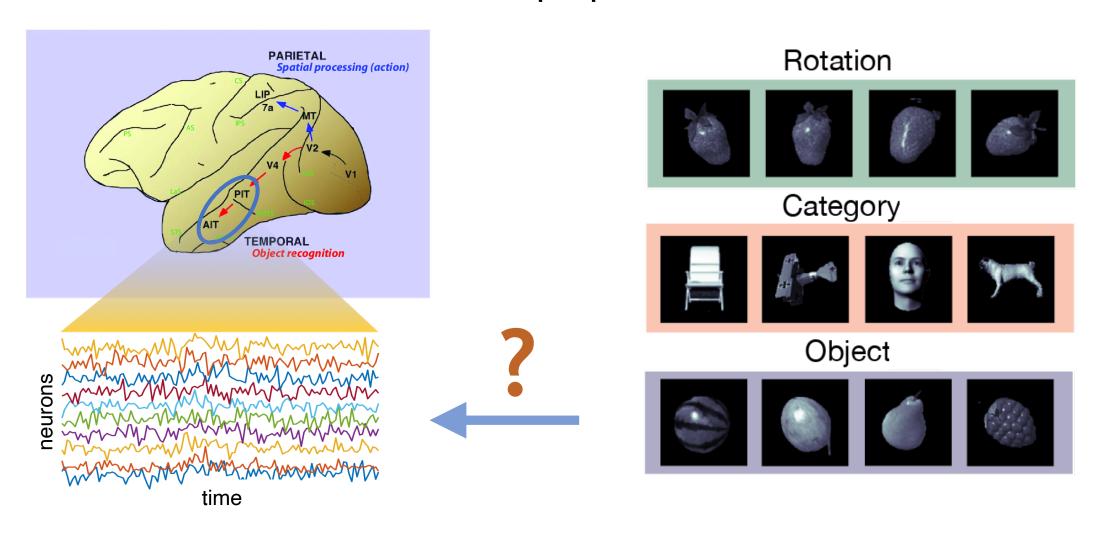
Our proposed idea



 No CNN alignment, directly analyze neural data



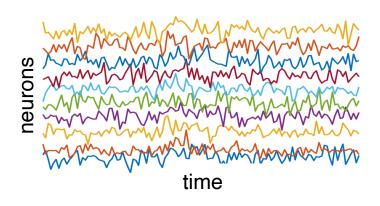
Our proposed idea

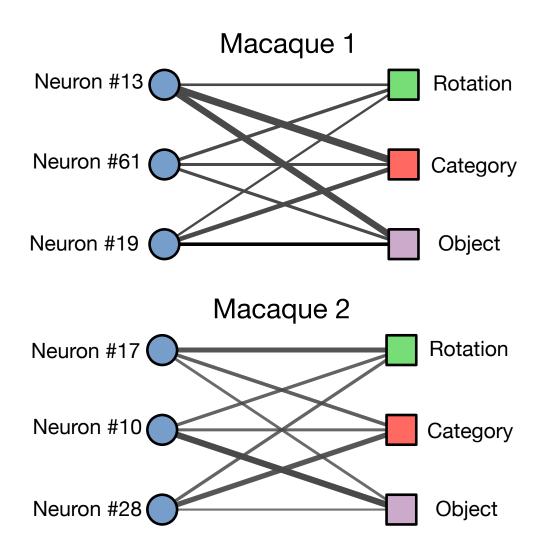


 No CNN alignment, directly analyze neural data Understand how IT neurons encode rich attributes spanning geometry, category, and object identity

Mixed selectivity

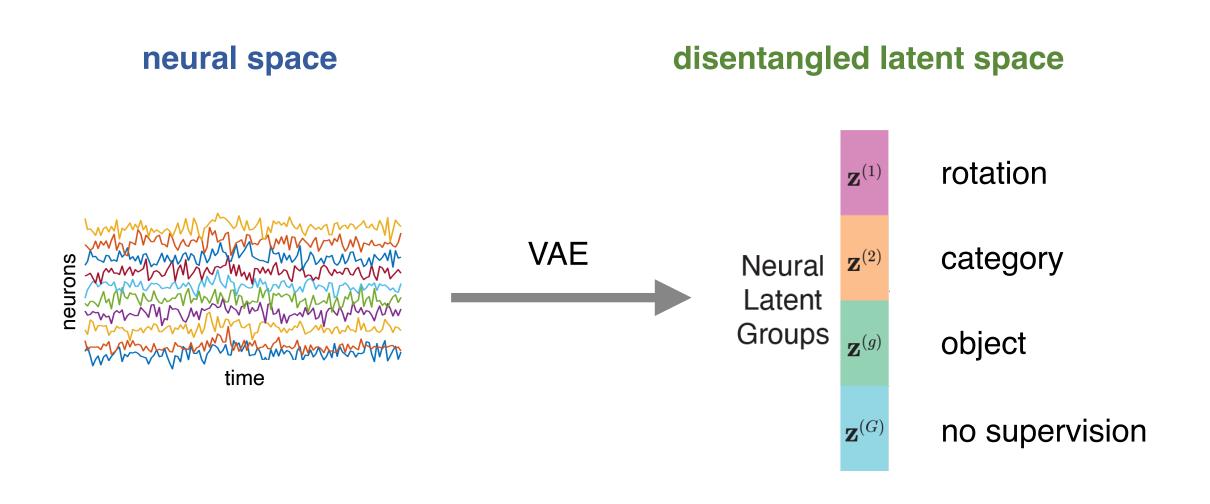
neural space





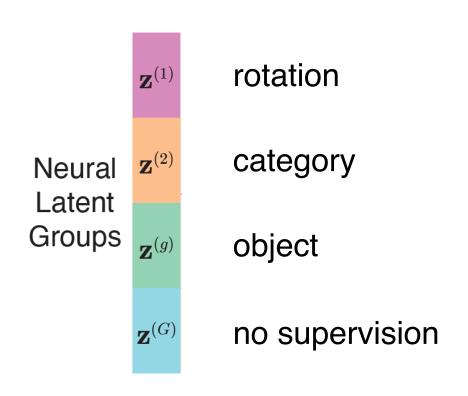
We cannot directly understand attribute encoding from raw neural activity.

Generative AI Framework: Variational Autoencoder



Generative Al Framework: Variational Autoencoder

disentangled latent space



Still we don't know:

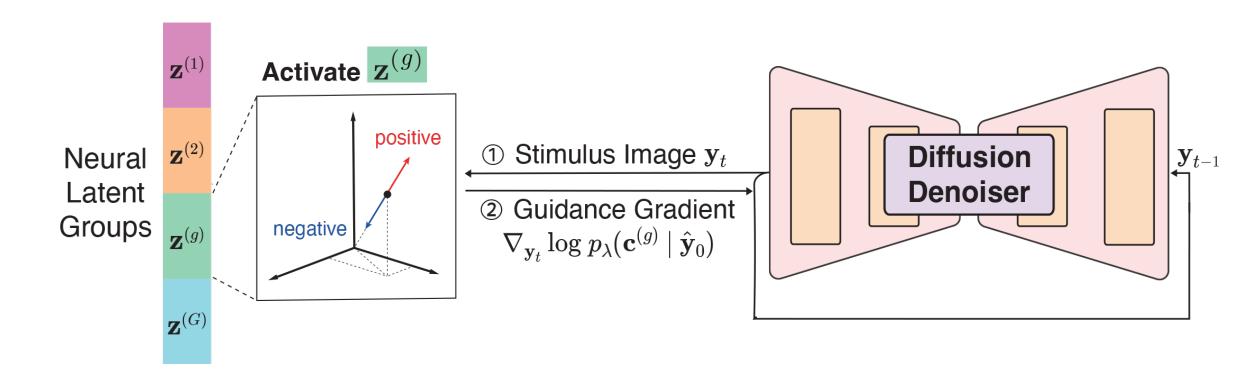
- What information is encoded in the latent group without supervision?
- Within each group, what individual latent dimensions represent or encode?
- Can they capture semantic attributes beyond category or object identity labels?
- E.g.: color, texture, size, shape, and semantic features defining objects like human faces or fruits

For example, rather than just claiming the entire latent group as representing a single category like "human face," we aim to identify subspaces encoding specific face attributes (e.g., gaze direction, facial structure, head shape).

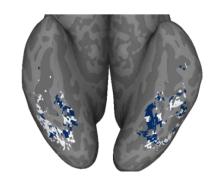
Generative AI Framework: Diffusion

disentangled latent space

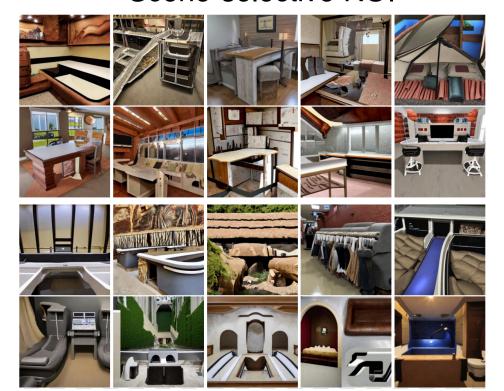
classifier-guided diffusion

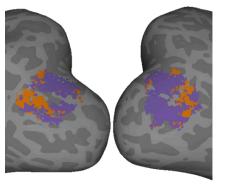


Diffusion-based approaches for probing neural encoding



Scene-selective ROI



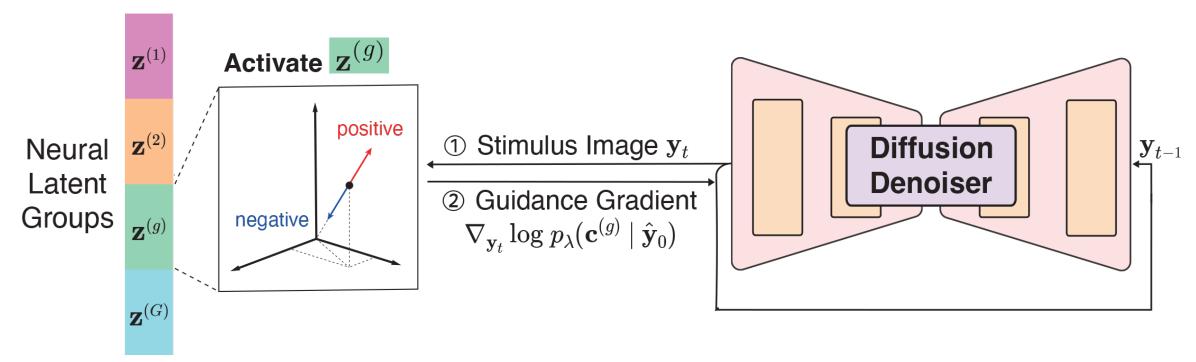


food-selective ROI

Generative AI Framework: Diffusion

disentangled latent space

classifier-guided diffusion



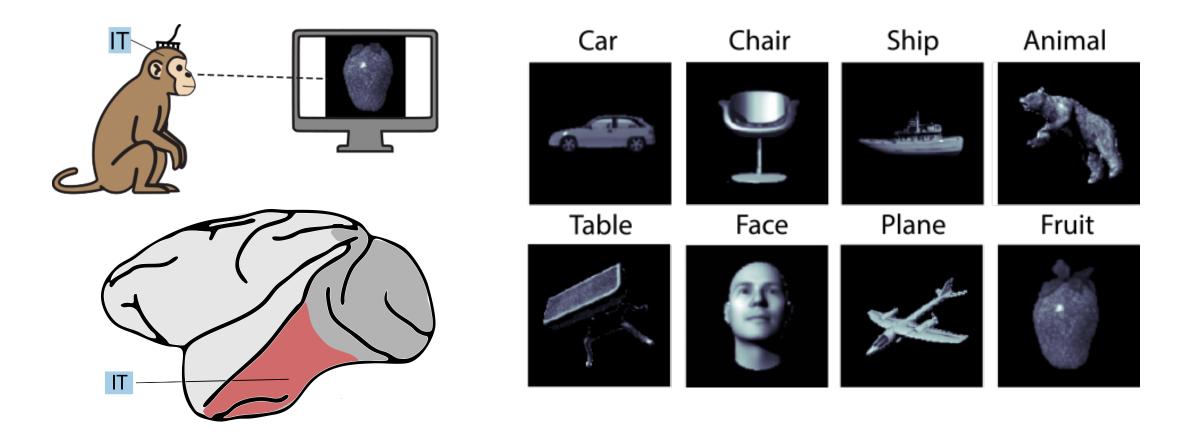
Our novelty:

- Unlike prior work that manipulates neural space for guidance, we manipulate the latent space directly.
- Introduce a new way to induce guidance from latent representations.

Evaluation

Evaluate the framework using a public IT cortex dataset

- It has single-unit spiking responses from the IT cortex of two macaques (M1, M2)
- Neural activity was recorded from 110 channels in M1 and 58 channels in M2



Generative AI framework for neural representation discovery in IT

Approach:

- Disentangled VAE → isolates latent groups in neural data
- With **Diffusion Model** → probes and visualizes semantic content of each latent group via image synthesis

Innovation:

- First to use diffusion-based generative probing of latent neural subspaces from electrophysiology
- Provides semantic interpretability beyond feature decoding

Scientific Insight:

- Uncovers structured, disentangled neural codes in higher visual areas
- Bridges population activity with geometric and semantic attributes in naturalistic vision

Acknowledgement

Institute for Data Engineering and Science (IDEaS)

GenAl for science seed grant

Backup Slides

Our proposed idea

