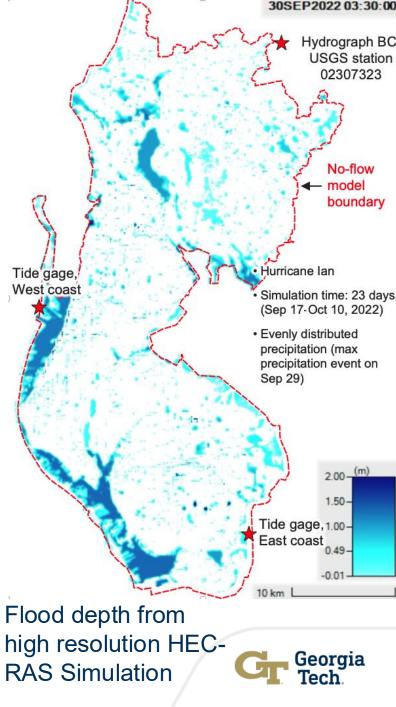
Latent-EnSF for Sparse Data Assimilation of High-Dimensional Dynamical Systems

Phillip Si

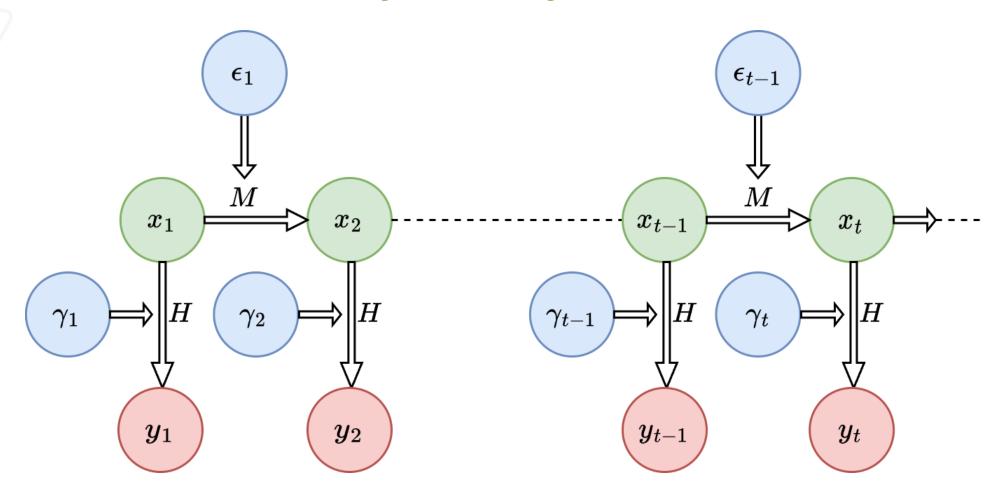
Data Assimilation for Flood Prediction

• Left: Camera image of the water level at 3 different times

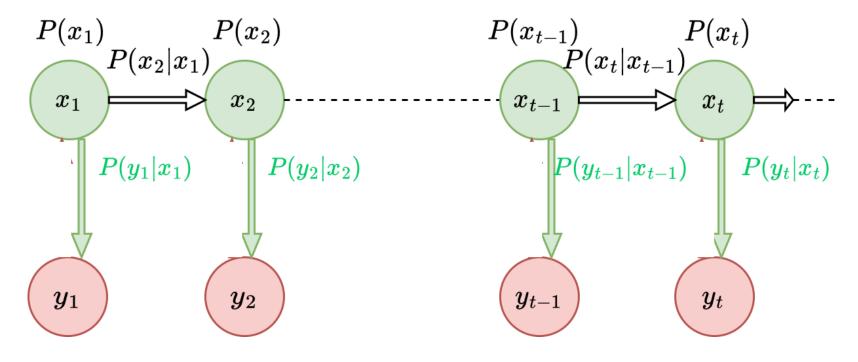
• Right: Sparsely located camera sites in Pinellas, Florida



Data Assimilation: Physical System

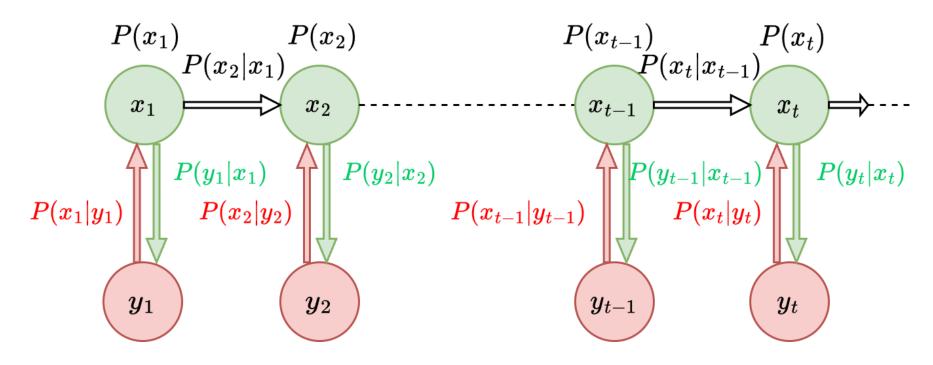


Bayesian Filtering



Prediction:
$$P(x_t|y_{1:t-1}) = \int P(x_t|x_{t-1})P(x_{t-1}|y_{1:t-1})dx_{t-1}$$

Bayesian Filtering

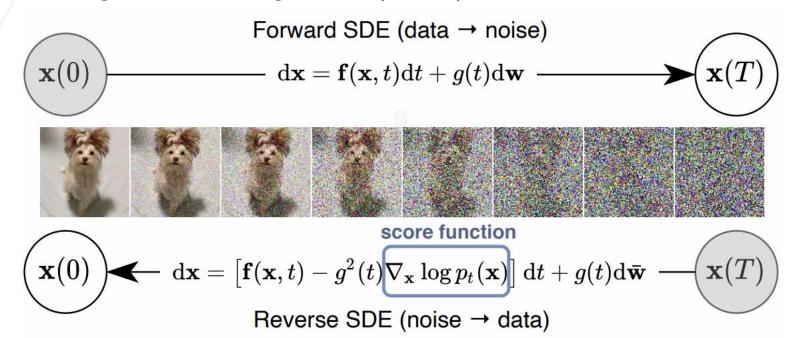


Prediction:
$$P(x_t|y_{1:t-1}) = \int P(x_t|x_{t-1})P(x_{t-1}|y_{1:t-1})dx_{t-1}$$

Update:
$$P(x_t|y_{1:t}) = \frac{1}{Z} P(y_t|x_t) P(x_t|y_{1:t-1})$$

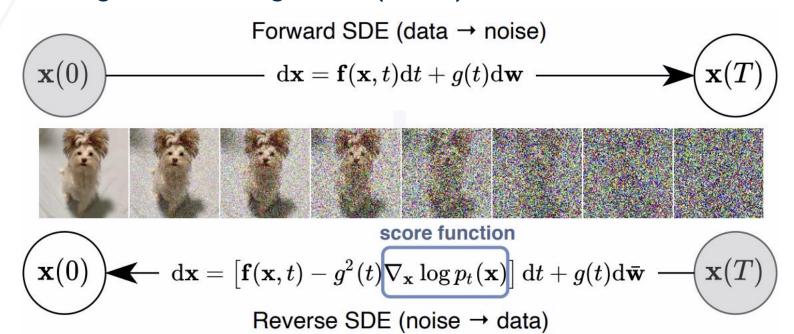
Score-Matching, SDEs, and Diffusion Models

- Score-matching SDEs create a forward noisy SDE $dx = f(x,\tau)d\tau + g(\tau)dw$
- And couple it with a reverse-time SDE for sampling $-dx = [f(x,\tau) g^2(\tau)\nabla_x \log P_\tau(x)]dt + g(\tau)d\bar{w}$
- Image from Song et. al (2021)



Score-Matching, SDEs, and Diffusion Models

- Score-matching SDEs create a forward noisy SDE $dx = f(x,\tau)d\tau + g(\tau)dw$
- And couple it with a reverse-time SDE for sampling $dx = [f(x,\tau) g^2(\tau) \nabla_x \log P_\tau(x)] dt + g(\tau) d\bar{w}$
- Image from Song et. al (2021)



Ensemble Score Filters (EnSF) (Bao et. al, 2023)

 Models the score function instead of the precise distribution and draw samples by the reverse SDE process

$$dx = [f(x,\tau) - g^{2}(\tau)\nabla_{x}\log P_{\tau}(x)]d\tau + g(\tau)d\bar{w}$$

$$\nabla_{x}\log P\left(x_{t,\tau}\big|y_{1:t}\right) = \nabla_{x}\log P\left(x_{t,\tau}\big|y_{1:t-1}\right) + h(\tau)\nabla_{x}\log P\left(y_{t}\big|x_{t,\tau}\right).$$

 Shown to be able to handle high dimensional systems like a million-dimensional Lorenz-96 system

EnSF with Sparse Observations

- EnSF relies on full-dimension observations
- Struggles when incorporating sparse observation functions due to the score function being ill-defined at non-observed points

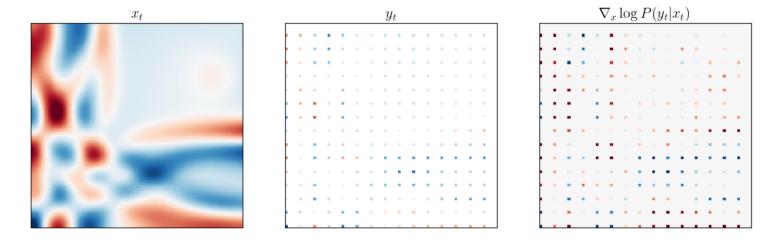


Figure 2: The gradient of the log-likelihood function $\nabla_x \log P(y_t|x_t)$ (right) vanishes at the points where the sparse observation data y_t (middle) do not have any information of the state x_t (left).

Sparsity (continued)

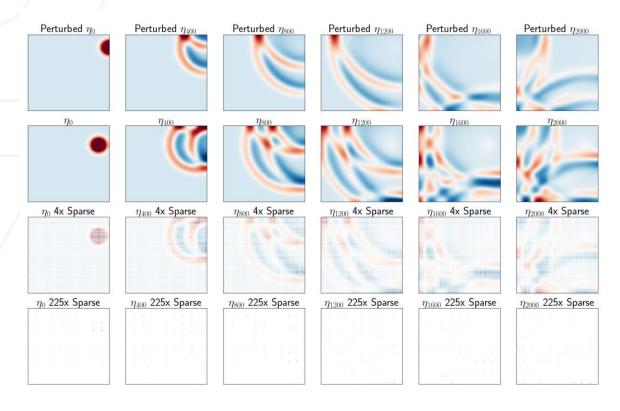


Figure 4: Evolution of states and sparse observations.

$$\nabla_x \log P(y_t|x_{t,\tau}) = (y_t - H(x_{t,\tau}))^T \Gamma_t^{-1} \nabla_x H(x_{t,\tau})$$

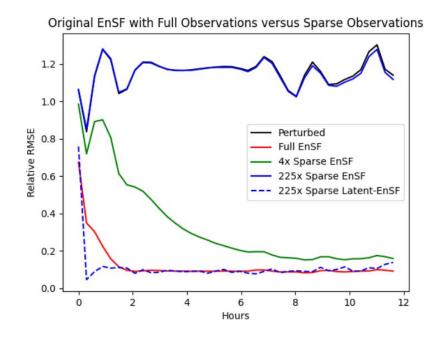
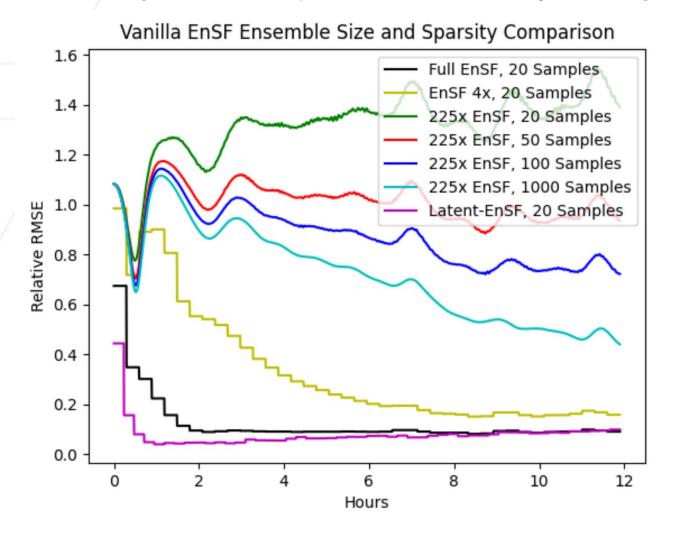


Figure 5: Relative RMSE of EnSF and Latent-EnSF for sparse observations.

Sparsity and the EnSF

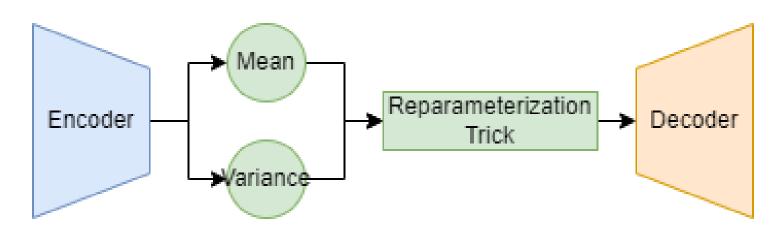
• EnSF gets better prior estimates by having more ensemble members



Variational Autoencoders (Kingma and Welling, 2022)

- Variational Autoencoders approximate a low-dimensional manifold of the original data by bottlenecking the latent dimension
- Allows for low-dimensional nonlinear representations
- Trained by minimizing for the ELBO loss, with a MSE loss in the state space and a KLD term (with respect to a N(0, 1) gaussian) in the latent space

$$KLD(\mu, \Sigma) = \sum_{i=1}^{r} -\log(\sigma_i) + \frac{\sigma_i^2 + \mu_i^2}{2} - \frac{1}{2}$$



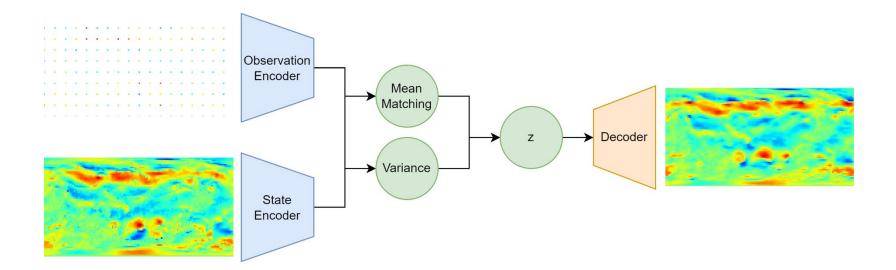
Direct Observation Encoder Matching

- When training the model, we match the means of the observation-space and state-space encoders and directly model the encoding without interpolation
- Loss can be written as

$$\ell_t(\theta) = ||x_t - \mathcal{D}(z_t)||_2^2 + ||x_t - \mathcal{D}(z_t^{\text{obs}})||_2^2$$

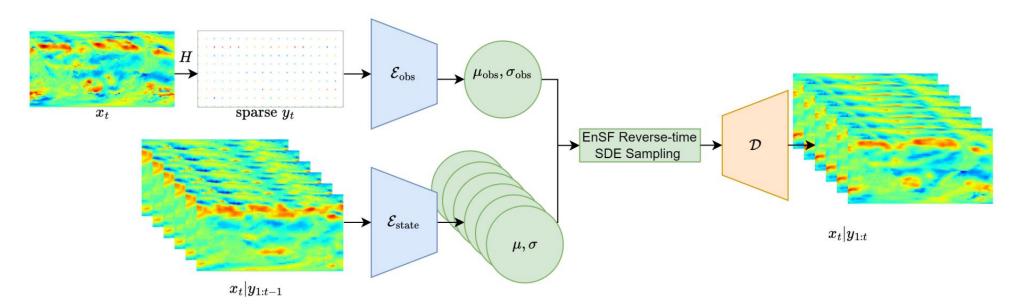
$$+ ||\mathcal{E}(x_t) - \mathcal{E}_{\text{obs}}(y_t)||_2^2$$

$$+ \lambda D_{\text{KL}}(\nu_t | \nu) + \lambda D_{\text{KL}}(\nu_t^{\text{obs}} | \nu)$$
(Reconstruction Term)
$$+ \lambda D_{\text{KL}}(\nu_t | \nu) + \lambda D_{\text{KL}}(\nu_t^{\text{obs}} | \nu)$$
(Regularization Term)



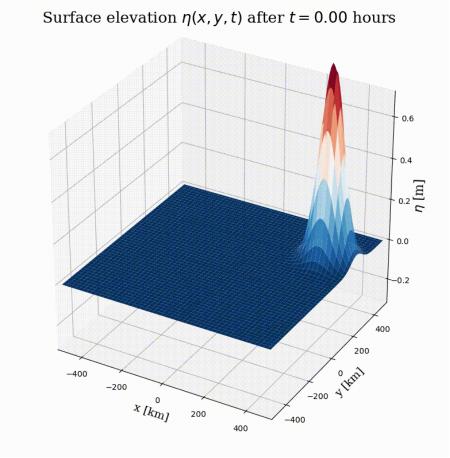
Relaxing Sparse Data Assimilation with EnSF

- Casting the sparse observations to the latent space results in the observation function being incorporated into the VAE versus explicitly defined
 - Allows for assimilation when the observation function is not explicitly known
- Additionally, since the VAEs regularize the latent space, the estimated covariance is easier to tune compared to standard autoencoders



Shallow-Water Equations and Example Simulation

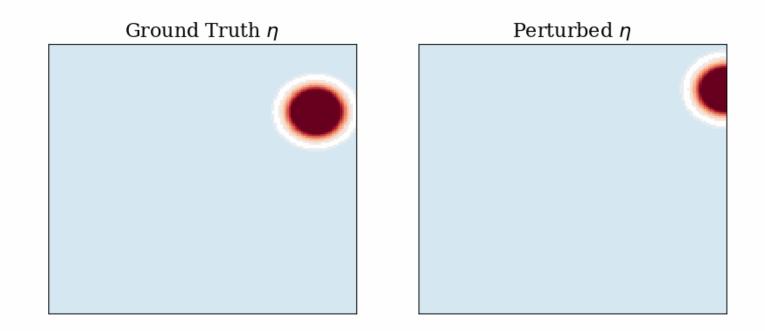
- Shallow-water equations originate from Navier-Stokes equations and model the flow
- Starts off with big gaussian perturbation
- Our simulations are then run for 2000 time steps using the upwind method, keeping track of height and velocity in the u and v directions
- Grid size of 150x150



Simulation code obtained from https://github.com/jostbr/shallow-water

Perturbed State

- We perturb the initial position of the gaussian bump which leads to different dynamics later down the line
- For following assimilation experiments, we will start out with the perturbed state and use observations from the true state for assimilation



Results

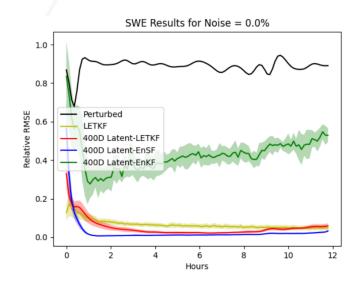


Figure 13: Relative RMSE of Latent-EnSF compared to baselines with no observation noise.

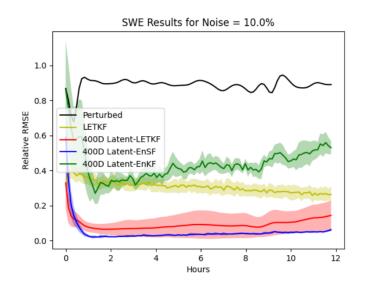


Figure 6: Relative RMSE of Latent-EnSF compared to baselines with 10% observation noise.

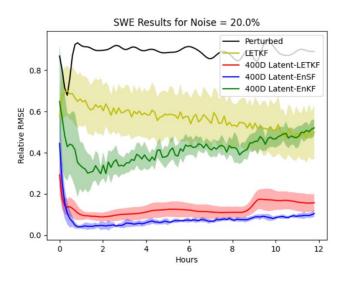
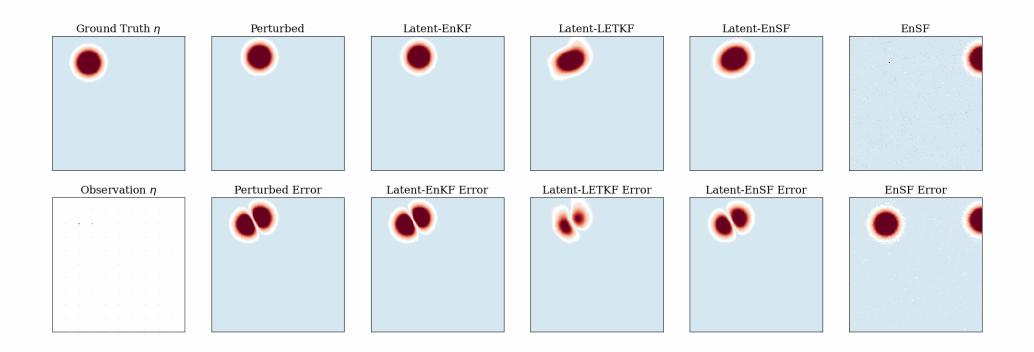


Figure 14: Relative RMSE of Latent-EnSF compared to baselines with 20% observation noise.

Animation – 400 Dimensional Latent Space



ERA5 Z500 and U500 Plot

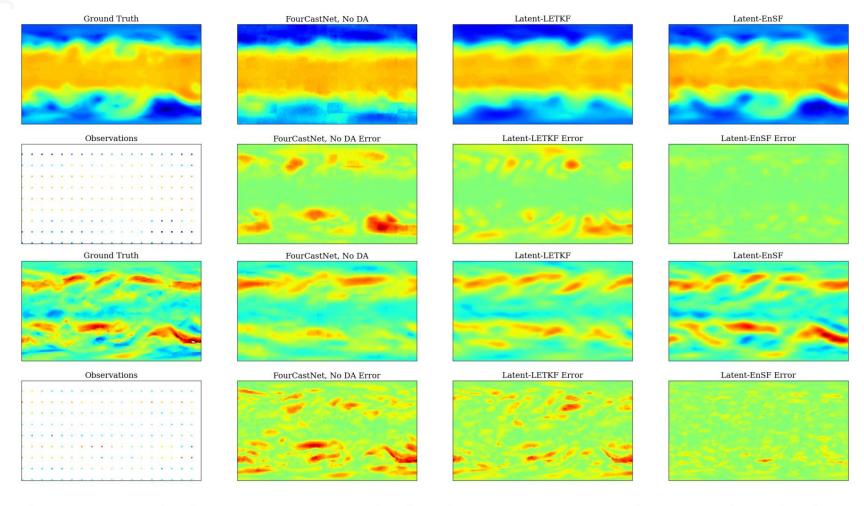
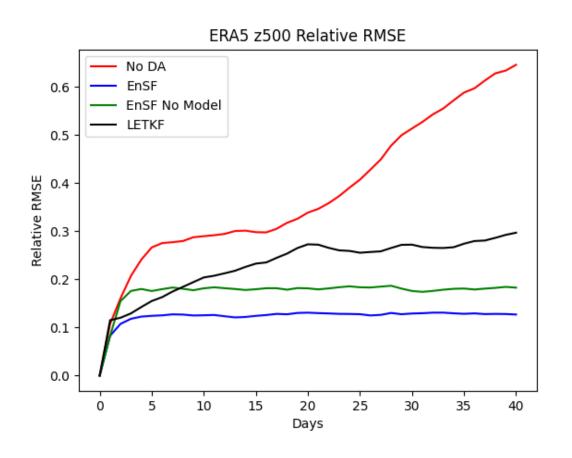


Figure 10: ERA5 Z500 (top two rows) and U500 (bottom two rows) medium-ranged weather forecasting samples after 41 days, along with the errors. Data assimilation is conducted once a day with 64x sparse observations. We compare against a baseline FourCastNet model and Latent-LETKF.

ERA5 Z500 Relative RMSE



References

- Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering. 1960.
- Bao, F.; Zhang, Z.; Zhang, G. An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems. 2023.
- Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes. 2022.
- Amendola, M.; Arcucci, R.; Mottet, L.; Casas, C. Q.; Fan, S.; Pain, C.; Linden, P.; Guo, Y.-K. Data Assimilation in the Latent Space of a Neural Network. 2020.
- C. Liu, R. Fu, D. Xiao, R. Stefanescu, P. Sharma, C. Zhu, S. Sun, C. Wang, EnKF data-driven reduced order assimilation system. Engineering Analysis with Boundary Elements. 2022.
- Sibo Cheng, I. Colin Prentice, Yuhan Huang, Yufang Jin, Yi-Ke Guo, Rossella Arcucci. Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting. 2022.
- Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. 2021.
- Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. 2022.
- Si, Phillip, and Peng Chen. "Latent-EnSF: A latent ensemble score filter for high-dimensional data assimilation with sparse observation data." *ICLR 2025.*

Ensemble Score Filters (EnSF) (Bao et. al, 2023)

- Ensemble Score Filters take a score-based approach which uses a diffusion-model inspired SDE approach to sample from $P(x_{t+1}|y_{0:t+1})$
- Utilize a reverse time SDE in pseudo-time step au $dx = f(x, \tau)d\tau + g(\tau)dw$
- w is a d-dimensional Wiener process, and f and g are defined as the following:

$$f(x_{t,\tau},\tau) = \frac{d\log\alpha_{\tau}}{d\tau}x_{t,\tau} \qquad g^2(\tau) = \frac{d\beta_{\tau}^2}{d\tau} - 2\frac{d\log\alpha_{\tau}}{d\tau}\beta_{\tau}^2$$

with
$$\alpha_{\tau} = 1 - \tau (1 - \epsilon_{\alpha})$$
 and $\beta_{\tau}^2 = \epsilon_{\beta} + \tau (1 - \epsilon_{\beta})$

This gives a conditional Gaussian distribution

$$x_{t,\tau}|x_{t,0} \sim N(\alpha_{\tau}x_{t,0}, \beta_{\tau}^2 I)$$

ERA5 Dataset

- ERA5 is a climate reanalysis dataset with data that goes back to 1940
- For the prediction model, we adapt the FourCastNet model (Pathak et. al, 2022) and assimilate the data once per day with our Latent-EnSF. Both prediction and VAE models are trained on 10 years of data

