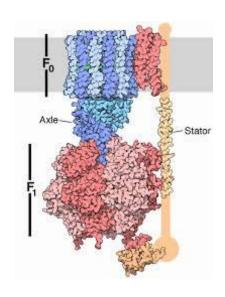
Protein Design and Engineering with Multi-Modal Generative Al Models

Yunan Luo

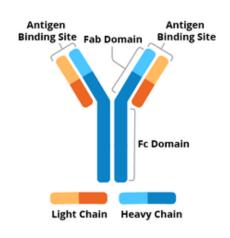
School of Computational Science and Engineering
College of Computing
Georgia Institute of Technology

Proteins perform diverse biological functions



ATP Synthase Producing energy

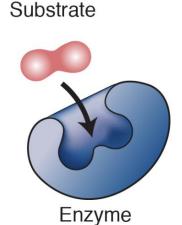
currency (ATP) of life



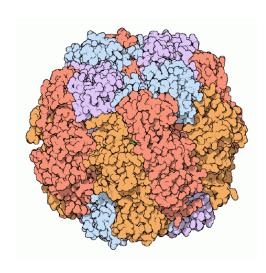
Antibody

Detecting and neutralizing viruses

Insulin
Regulating blood
sugar

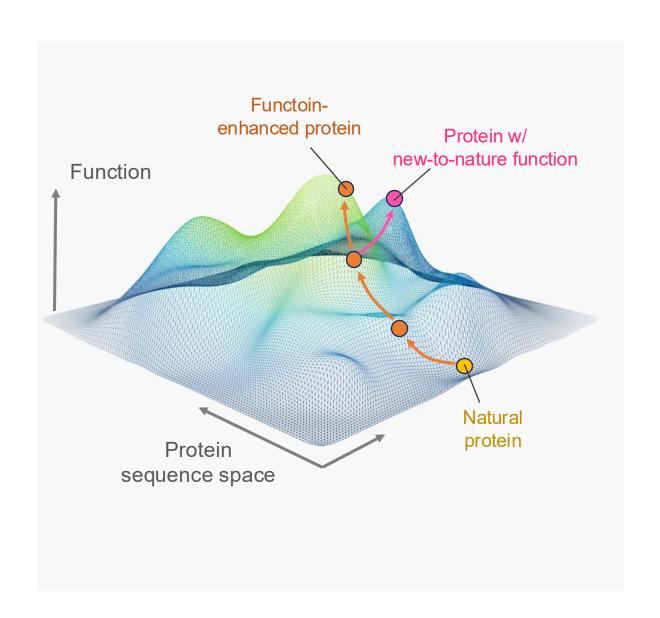


Enzyme
Speeding up
chemical reactions



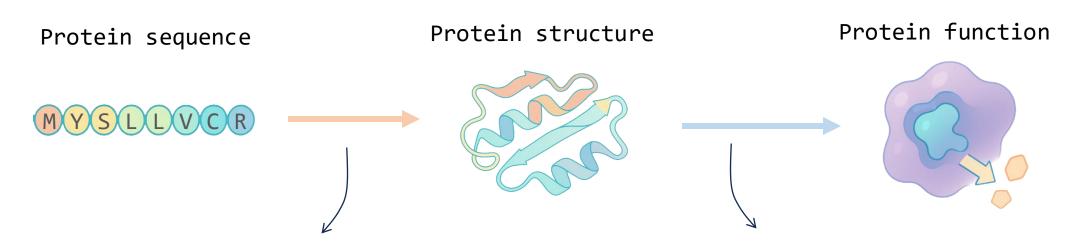
Rubisco
Capturing CO₂ in photosynthesis

Protein design and engineering



How is a protein's function determined?

Protein's sequence-structure-function relationship



This project: functional protein design

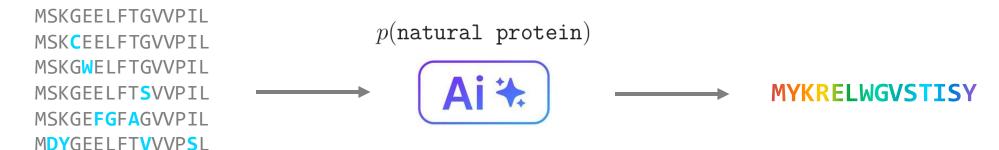
Nobel Prize in Chemistry 2024 *for protein structure prediction (AlphaFold)*

Demis Hassabis John Jumper

How to design functional proteins?

Learning from natural protein evolution using GenAl

$$p(\texttt{functional protein}) \approx p(\texttt{natural protein})$$



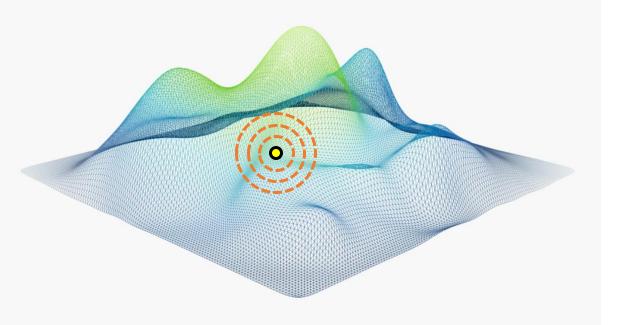
•••

Natural proteins

Generative AI models

Novel functional proteins

Protein fitness landscape



How to find functional proteins?

Directed evolution for protein engineering (2018 Nobel Prize in Chemistry) **Parent** Frances Arnold (Caltech) Which Sequence mutations to make? Directed **Evolution** Variant

Improved

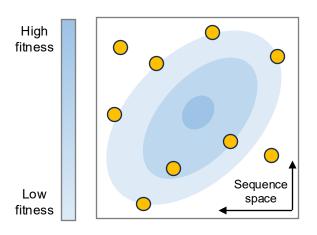
variants

pool

Protein engineering for new-to-nature function

- Task: Design functional and diverse proteins
- Challenge: No existing fitness data (e.g., because the function is new-to-nature)

Conventional starting library design (e.g., NNK library)



(random search, many are non-functional)

Goal 1: High *fitness* Goal 2: High diversity Increasing exploration

Our approach: Pareto-optimal library design (MODIFY)

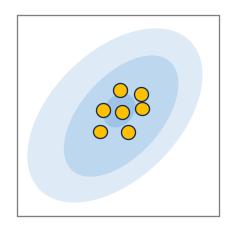
(most variants in the library (the library contains novel are functional)

Increasing exploitation

protein variants)

Zero-Shot Fitness Prediction using Foundation Models

Goal 1: High *fitness*



Q: Cold-start problem. No data to train a supervised fitness predictor.

A: Use pre-trained protein language models to make zero-shot fitness prediction

Natural language model (LM):

Protein language model (PLM):

- PLMs are trained on protein sequences we observed in nature
- Evolutionary plausibility correlates with fitness

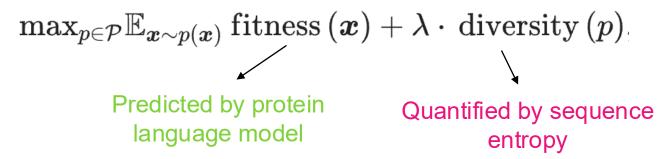
Characterizing the library diversity

Goal 2: High *diversity*

Goal 1: High fitness

2 Increasing exploration Increasing exploitation

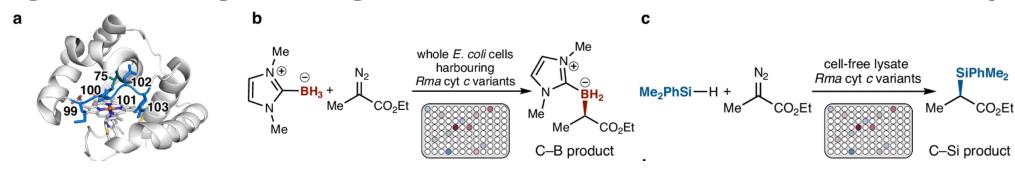
Goal:



- A Pareto optimization problem
- Learned a probability distribution over protein sequence

Ding, K., Chin, M., Zhao, Y. et al. "Machine learning-guided cooptimization of fitness and diversity facilitates combinatorial library design in enzyme engineering," *Nature Communications*, 2024

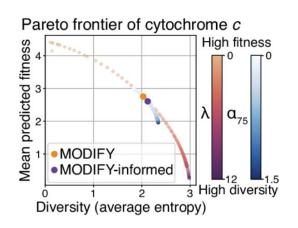
Using AI to Engineer generalist new-to-nature biocatalysts



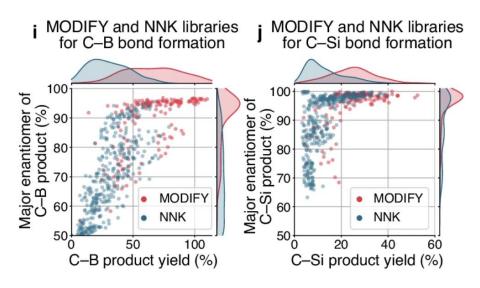
Rma cytochrome c

Carbon-boron (C-B) bond formation

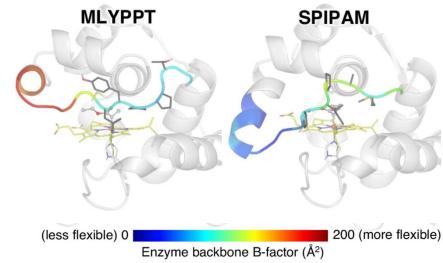
Carbon-silicon (C-Si) bond formation



Yang Yang (UCSB Peng Liu (U of Pitt Chemistry) Chemistry)



Improved two objectives: yield and selectivity



GenAl designed novel proteins 6-mutation away from human-designed proteins

Ding, K., Chin, M., Zhao, Y. et al. "Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering," *Nature Communications*, 2024

How to design functional proteins?

Learning from natural protein evolution using GenAl

$$p(\text{functional protein}) \approx p(\text{natural protein})$$

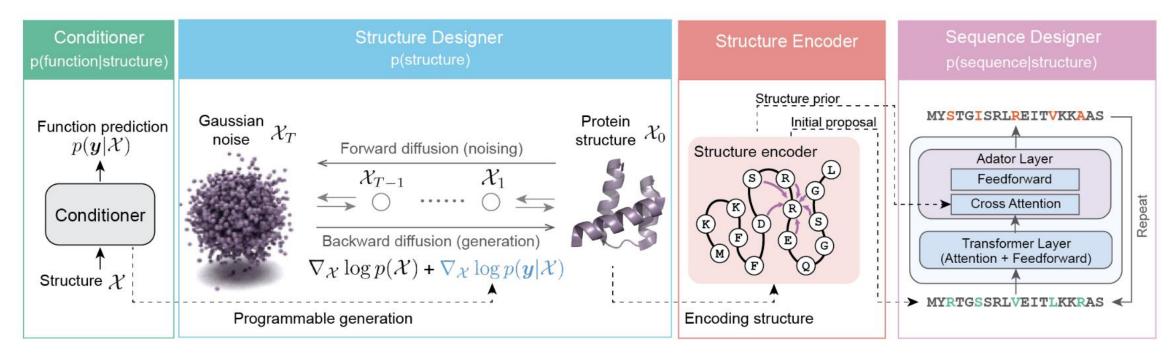
Function-guided protein design with GenAl

$$p(\text{protein}|\text{function}) \propto p(\text{protein}) \times p(\text{function}|\text{protein})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Protein \text{ sequence/structure} \qquad Protein \text{ function} \qquad \qquad \\ GenAl \text{ model} \qquad \qquad \text{prediction model}$$

Programmable multi-modal protein design



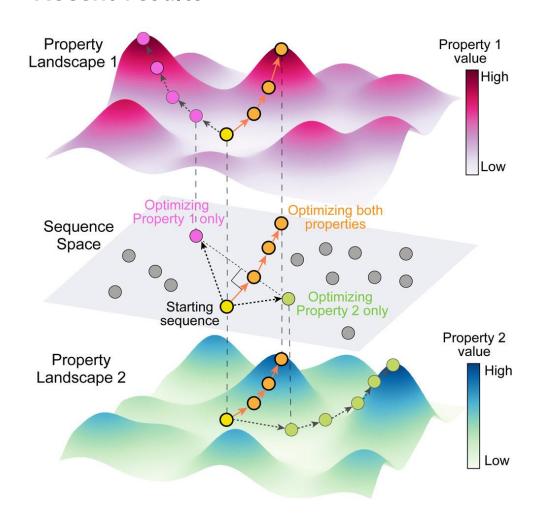
Protein function prediction model

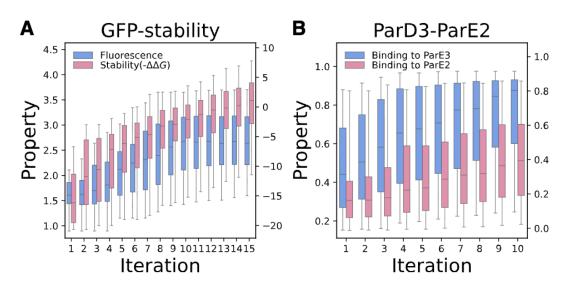
Protein structure generative model

Protein sequence generative model

Multi-objective protein design

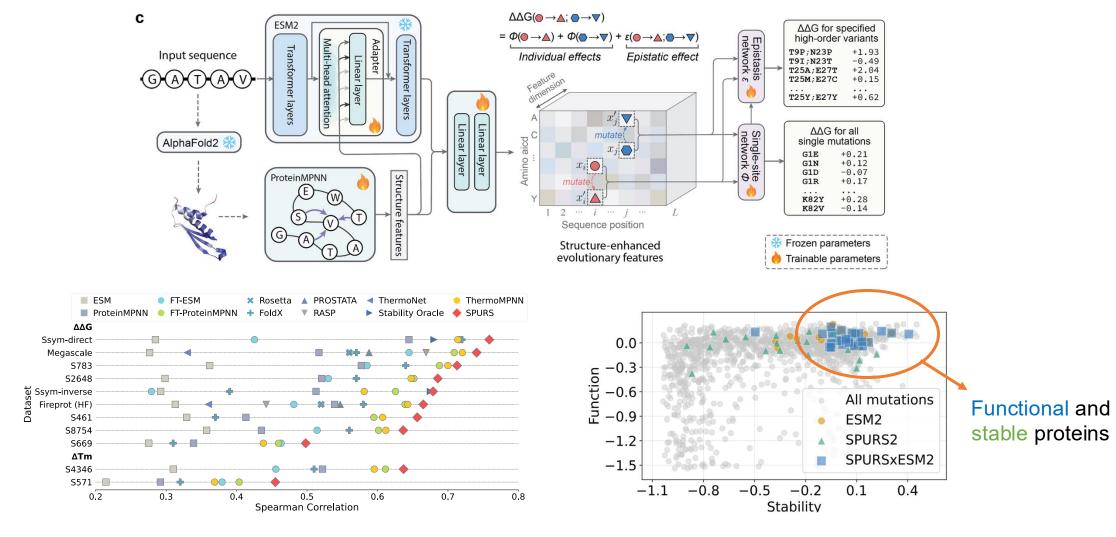
Recent results





Multi-modal, multi-objective protein design

Preliminary results



Li, Ziang, and Yunan Luo. "Rewiring protein sequence and structure generative models to enhance protein stability prediction." RECOMB, 2025.

Conclusion

- Protein generative AI models capture evolutionary patterns of functional proteins
- Function-guided protein design improves hits rate
- Enables the design of novel, diverse functional proteins

Acknowledgements

- **Group:** Kerr Ding, Ziang Li, Jiaqi Luo, Tony Tu, Shitong Dai
- Collaborators: Huimin Zhao, Yang Yang, Peng Liu, Tianhao Yu, Junming Zhao, Liupeng Zhao, Michael Chin, Yunlong Zhao, Wei Huang, Binh Khanh Mai, Huanan Wang, et al.
- Fundings: GaTech IDEaS x Microsoft CloudHub Seed Grant, NIH MIRA (R35GM150890), NSF CAREER (2442063)

