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Proteins

A sequence s of length L over the alphabet X of 20 characters

MEVEFLVLLPLVSSQCVNLTTRTQLPPAYTNSEFTRGVYYPDKVEFRSSVLHSTQOQDLELPFEES
NVTWEFHATHVSGTNGTKREDNPVLPENDGVYFASTEKSNITIRGWIFGTTLDSKTQSLLIV
NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE
GKOGNFKNLREFVEFKNIDGYFKIYSKHTPINLVRDLPOQGEFSALEPLVDLPIGINITREQT
LLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETK
CTLKSFTVEKGIYQTSNFRVQPTESIVREFPNITNLCPFGEVENATRFASVYAWNRKRISN
CVADYSVLYNSASESTFKCYGVSPTKLNDLCEFTNVYADSEFVIRGDEVRQIAPGQTGKIAD
YNYKLPDDETGCVIAWNSNNLDSKVGGNYNYLYRLEFRKSNLKPFERDISTEIYQAGSTPC
NGVEGENCYFPLOSYGEFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN
FNENGLTGTGVLTESNKKFLPFOQOFGRDIADTTDAVRDPOQTLEILDITPCSEFGGVSVITP
GTNTSNQVAVLYQDVNCTEVPVATHADQLTPTWRVYSTGSNVEFQTRAGCLIGAEHVNNSY
ECDIPIGAGICASYQTQTNSPRRARSVASQSITAYTMSLGAENSVAYSNNSIATPTNETI
SVITEILPVSMTKTSVDCTMY ICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE
VEFAQVKQIYKTPPIKDEFGGENEFSQILPDPSKPSKRSFIEDLLENKVTLADAGEIKQYGDC
LGDIAARDLICAQKEFNGLTVLPPLLTDEMIAQY TSALLAGTITSGWTFGAGAALQIPFAM
OMAYRENGIGVTONVLYENQKLIANQEFNSAIGKIQDSLS STASALGKLODVVNONAQALN
TLVKQLSSNEFGAISSVLNDILSRLDKVEAEVQIDRLITGRLOSLOTYVTQOLIRAAE IRA
SANLAATKMSECVLGQSKRVDFCGKGY HLMSFPQOSAPHGVVELHVTYVPAQEKNETTAPA
ICHDGKAHFPREGVEVSNGTHWEVTORNEFYEPQITITTDNTEVSGNCDVVIGIVNNTVYDP
LOPELDSFKEELDKY FKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL
QELGKYEQY IKWPWY IWLGFIAGLIATVMVTIMLCCMTSCCSCLKGCCSCGSCCKEDEDD

SARS-CoV-2 Spike protein



Protein Universe

The arrangement of amino acids encodes the
astonishing functional diversity of proteins
GIn

Glu . el Asn
Ala
Ar
g " @
Asp lle Met
i
wm

# of possible 100-residue proteins > # atoms in the universe

Figure: lecturio.com

All possible protein sequences
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known function ;



Protein Universe

» Annotating functions for existing proteins
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Protein sequence : .
or structure x = fo(x) >y Protein function
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CLEAN: [Yu et al., Science, 2023];
PenLight: [Luo et al., PSB, 2023]; MSRep [Luo et al., RECOMB, 2025]

Natural proteins w/
known function .



Protein Universe

» Annotating functions for existing proteins
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Protein sequence : .
or structure x = fo(x) >y Protein function

X y

CLEAN: [Yu et al., Science, 2023];
PenLight: [Luo et al., PSB, 2023]; MSRep [Luo et al., RECOMB, 2025]

« Designing protein to achieve novel function
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Protein sequence * Protein function
or structure X" < argmax,f(x)
X

MODIFY: [Ding et al., Nat Commun, 2024];
ConFit: [Zhao et al., RECOMB, 2024]; SPURS: [Li et al., RECOMB, 2025]

More functional proteins in
the dark space?
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Learning the language of protein sequences

Inspired by self-supervised learning of large language models (LLMs)

Masked token (word/amino acid) prediction

Natural language (e.g., GPT):

@ To be, or not to , that is the question

Protein language:

MSKGEELFTGVVPILVE_DGDVNGHKFSVS

Adapted from Alex Rives



Protein Language Models (PLMs)

Inspired by large language models (LLMs) in natural language processing (NLP)
..ELTAFLHNMGDHV...

T

p(xilX1 . X1, Xiy1XL)
Probability

ARNDCQEGHILKMFPSTWYYV

-

AA Prediction
1
( )
Transformer
neural network Bepler & Berger, ICLR, 2019
eural netwo Rao et al, NeurlPS, 2019
\ J Alley et al., Nat. Methods, 2019
. Elnaggar et al., TPAMI, 2021

i Rives et al., PNAS, 2021
m . _ELTAFL NMGDHV... Lin et al., Science, 2023
Madani et al., Nat. Biotech, 2023
Hayes et al., Science, 2025

Protein sequence
database
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Injecting function knowledge to protein language models

Protein sequence
database

Protein language
model (ESM-1b)

6 major enzyme functions

® Oxidoreductases
® Transferases

Hydrolases b % 57
Lyases
- Y .
® Isomerases ‘w2
Ligases

Sequence representation (tSNE)

Protein function
annotation

Bic

Function-informed

protein language model

)
¥

Protein sequence
database

Sequence representation (tSNE)




CLEAN: contrastive learning for enzyme function annotation

Representation space

Protein function ontology —
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Yu et al., Science (2023) 9



State-of-the-art enzyme function annotation

(In collaboration with Prof. Huimin Zhao’s lab at University of lllinois)

0.2- Yu et al., Science (2023)
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CLEAN annotates understudied enzymes

(In collaboration with Prof. Huimin Zhao’s lab at University of lllinois)

Enzyme SsFIA (UniProt: WOW999) ) g °§ 1009 [M+H]*
* In UniProt/TrEMBL.: labeled as Fluorinase (EC: 2.5.1.63) s g :Z 27000827
o 404
. T . g 'ézo-
Baseline predictions: 3 ——— & | 1. 3
« BLAST: Fluorinase (EC: 2.5.1.63) s 7T @ " o R
 DeepEC: Fluorinase (EC: 2.5.1.63) B f g 10070
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§ E ool 399.14221
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Yu et al., Science (2023) 11



Protein function annotation schemes

EC number Gene3D

Class §,§° 1.X.X.X

4.1.3.
Major class— J Architecture E% 1.25.X.X
Subclass - 5 ;
Topology @% 1.25.10.x

Superfamily‘g??;!'j!ggﬁ 1.25.10.60

Enzyme isocitrate lyase

Sub-subclass =

Enzyme catalysis Protein domain
reaction classification structure annotations

Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant
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Annotation gap of protein functions

Databases of protein function annotations follow a long-tail distribution

Enzyme function Domain structure Family annotation Functional annotation
(EC number) (Gene 3D) (Pfam) (Gene Ontology)
‘ 100000
10001 ]
10000 1000
10000
‘ 100.__-_(_JEELirEQE%_J_O_O_- 1000 occurrence=100 000
Class 100 occurrence=100 el N occurrence=100
occurrence | 100f =S = TS
101 10
10 104
01 04 0 0
0 1000 2000 39’00 4000 5000 0 1000 2000 3000 4000 5000 0 4000 8000 12000 0 10000 20000
Class index Class index Class index Class index

+ Afew function classes are associated with the majority of proteins (‘head classes’),
while many others are sparsely annotated (‘tail classes’)
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Unequal representativeness in ML parameter space

N
Lo = E :ﬁ(yl()r)eda yigrl.e C(ypred’ ytrue) T [':(ypred’ ytrue)
=1 yt,rueeH yé;ue ET
Head classes Tail classes
(many samples) (very few samples)
Biased representation space Equally distributed representation

Biased ML What we
model: want:
Most of the model’s “learning capacity” overly focuses Allocating “parameter budget” equally

on optimizing prediction accuracy for head classes to all function classes

14



MSRep: learning maximally spanning embedding space

MPMASVIAVA ) T T T
MSVRRRTHSD Pe! CTT T 111
Func 1 MGATDQALEA ~ TTTTTT11 N | coll
MGTEAEPPSP =S LT T T T 11 [e.ura.co apsej
MAVTECEWAS 0p) [TTTTT] inspired loss
Func 2 MRSVSGQVVC LUl LLT T 111
Func3 MywoLVRILV ~ \_ ) i
Imbalanced data Pretrained protein Projection network Loss Representation space

language model
representations

Property 1: Class centers are maximally separated. Property 2. Embeddings of the same class collapse to class center.
- - K
Linter = maxmin;, ; arccos( <ul Bo by MC> > Lintrg = i (x;, pi)
i =l - [l = pecll mra = Lon? Lo Dl -l
J=1 7 xpp(x)=j

Final loss: Loss = Lintrg + B Linter

Luo, Jiaqi, and Yunan Luo. "Learning maximally spanning representations improves protein function annotation." RECOMB, 2025.
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Benchmark scores

Improved performance across protein function annotation tasks
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Designing protein to achieve novel function

SIS\ \iode P ?‘@D@O

Protein sequence .
or structure X" < argmax,f(x)
X

Protein function

MODIFY: [Ding et al., Nat Commun, 2024;
ConFit: [Zhao et al., RECOMB, 2024]; SPURS: [Li et al., RECOMB, 2025]
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Protein fitness landscape How to find functional proteins!?

Elevation

= “Fitness”
(binding, expression, etc)
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Coordinate
= Protein sequence
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Figure: cradle.bio



Protein fitness landscape How to find functional proteins!?

Natural Selection and the Concept
of a Protein Space
Jouxy MAYNARD SMITH

School of Biologieal Scicnees,
University of Sussex,

Ej’ Maynard Smith.
" I Nature (1970): 563-564.

If evolution is to occur, functional proteins must
be surrounded by other functional proteins

19

Figure: cradle.bio



Protein engineering

« Mutagenesis experiments

Sequence Fitness of interest

(e.g., binding affinity, stability, expression)

MSKGEELFTGVVPIL
MSKCEELFTGVVPIL

MSKGWELFTGVVPIL

L ¢ s MSKGEELFTSVVPIL
g o oS N MSKGEELFTVVVPIL
i : L MSYGEEVFTGVVPIL
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MDYGEELFTVVVPSL
MSKGWELF TGVAPIL
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Protein engineering

« Mutagenesis experiments

Sequence Fitness of interest

(e.g., binding affinity, stability, expression)

MSKGEELFTGVVPIL
MSKCEELFTGVVPIL
MSKGWELFTGVVPIL
e - e MSKGEELFTSVVPIL
o e R MSKGEELFTVVVPIL
i ”' o MSYGEEVFTGVVPIL
MSKGEFGFAGVVPIL

MDYGEELFTVVVPSL
MSKGWELF TGVAPIL
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ORrRONPEFEPOUVIOHR
P WEFRErURLOPPUIO

21



Protein engineering

« Mutagenesis experiments

Sequence Fitness of interest
(e.g., binding affinity, stability, expression)
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Protein engineering

Directed evolution for protein engineering
(2018 Nobel Prize in Chemistry)

Parent

Frances Arnold
(Caltech)
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ML-guided directed evolution

+ Sequence-to-fitness prediction with machine learning

ML model
Sequence Fitness
—————————————— > MSKGTELFTGVVPIL e -— 0.85
Supervised T
training |

Sequence Fitness

MSKGEELFTGVVPIL 1.
MSKCEELFTGVVPIL
MSKGWELFTGVVPIL
MSKGEELFTSVVPIL
MSKGEFGFAGVVPIL
MDYGEELFTVVVPSL

PO UV
TweRr oMU

« Small-data (low-N) problem: labeled data is limited in biology
« Experiment data: 107-102 characterized variants

* ML models: often require >10° training samples

24



Our idea: Calibrating PLMs

* Observation: PLM already has strong unsupervised fitness prediction performance

* Hypothesis: Calibrate PLM with fitness data - more accurate supervised prediction!

»

Probability

l * A contrastive learning method:
ARNDCQEGHILKMFPSTWYYV Given two samples (x*, y*) and (x~, y~). When
y* >y, we want to have fp(x™) > fo(x7)

1 /

Pre-trained PLM PLM’s calibrated probability
PLM

X" = ELTAFLFNMGDHV )" = 4.25

X = ELTAFLKNMGDHV Y = 1.06

Zhao et al., RECOMB (2024) 26



Accurate low-N fitness prediction

ConFit outperformed baseline methods across 34 datasets

—— ConfFit —— eUniRep ESM1v
Augmented VAE @~ - TranceptEVE - EVmutation
Augmented EVmutation EVE
e @
0.65 - - Ours

© 0.60 1 /
©
—_— ® .
L 0.55- - Super\_/lsed
S baselines
c 0.50 —
© e | _
=
© 0.45 1 /" | Unsupervised
= = baselines

48 96 168 240
Training set size

Zhao et al., RECOMB (2024) 27



From general evolutionary landscape to function-specific

landscapes

General evolutionary
landscape captured by PLM

ConFit
s

Function-specific
fitness data (low-N)

! '

Blndlng affinity Expressmn Stablllty Growth rate Catalytic activity

VN ay

Function-specific landscapes
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Multi-objective protein sequence design

Recent results
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Experimental validation in biocatalysis

« New-to-nature enzymatic reaction

0 4
SR | Yo SEPRTE
ACCO %,Ls;iz;j‘é‘i'
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a Nonheme Fe enzyme
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-~ N ~
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Y
14
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]
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=
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D

* Two key enzymatic performance metrics:
* Yield

« Selectivity

Work in Progress;
Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant
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Multi-Objective Protein Design (ACCO Protein):
Pareto Optimization Results
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Experimental validation in biocatalysis
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Conclusion

» Protein generative Al models capture evolutionary patterns of functional proteins
« Enhanced protein function annotation

» Enabled the design of novel, diverse functional proteins
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