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Proteins

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFS

NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV

NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE

GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQT

LLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETK

CTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISN

CVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD

YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPC

NGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN

FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITP

GTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSY

ECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTI

SVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE

VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDC

LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAM

QMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALN

TLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRA

SANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPA

ICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP

LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL

QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDD

A sequence 𝑠 of length 𝐿 over the alphabet Σ of 20 characters

SARS-CoV-2 Spike protein



Protein Universe

The arrangement of amino acids encodes the 

astonishing functional diversity of proteins

All possible protein sequences

Natural protein 

sequences

# of possible 100-residue proteins > # atoms in the universe

Figure: lecturio.com
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Natural proteins w/ 

known function



Protein Universe
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Natural protein 

sequences
Natural proteins w/ 

known function

Function?

• Annotating functions for existing proteins

ML Model

Protein sequence 

or structure
Protein function𝑥 → 𝑓𝜃(x) → 𝑦

𝑥 𝑦

CLEAN: [Yu et al., Science, 2023]; 

PenLight: [Luo et al., PSB, 2023]; MSRep [Luo et al., RECOMB, 2025]



Protein Universe
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More functional proteins in 

the dark space?

Natural protein 

sequences
Natural proteins w/ 

known function

• Annotating functions for existing proteins

• Designing protein to achieve novel function

Novel, functional 

protein

ML Model

Protein sequence 

or structure
Protein function𝑥 → 𝑓𝜃(x) → 𝑦

𝑥 𝑦

ML Model

Protein sequence 

or structure
Protein function

𝑥 𝑦
𝑥∗ ← argmax𝑥𝑓(𝑥)

CLEAN: [Yu et al., Science, 2023]; 

PenLight: [Luo et al., PSB, 2023]; MSRep [Luo et al., RECOMB, 2025]

MODIFY: [Ding et al., Nat Commun, 2024]; 

ConFit: [Zhao et al., RECOMB, 2024]; SPURS: [Li et al., RECOMB, 2025]



Learning the language of protein sequences
Inspired by self-supervised learning of large language models (LLMs)

• Natural language (e.g., GPT):

• Protein language:

To be, or not to __, that is the question

MSKGEELFTGVVPILVE_DGDVNGHKFSVS

Adapted from Alex Rives

Masked token (word/amino acid) prediction
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Protein Language Models (PLMs)

PLM

𝑝(𝑥𝑖|𝑥1…𝑥𝑖−1, 𝑥𝑖+1𝑥𝐿)

…ELTAFLHNMGDHV…

A R N D C Q E G H I L K M F P S T W Y V

Probability

AA Prediction

Protein sequence 

database

Bepler & Berger, ICLR, 2019

Rao et al, NeurIPS, 2019

Alley et al., Nat. Methods, 2019

Elnaggar et al., TPAMI, 2021

Rives et al., PNAS, 2021

Lin et al., Science, 2023

Madani et al., Nat. Biotech, 2023

Hayes et al., Science, 2025

…ELTAFLHNMGDHV…
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Transformer 

neural network

Inspired by large language models (LLMs) in natural language processing (NLP)



Injecting function knowledge to protein language models

Protein sequence 

database Protein sequence 

database

Protein function 

annotation

Protein language 

model (ESM-1b)
Function-informed 

protein language model

Sequence representation (tSNE) Sequence representation (tSNE)

6 major enzyme functions
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CLEAN: contrastive learning for enzyme function annotation
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PLM

Representation space

Large distance

Small distance

Protein function ontology

Function 1

Function 2 Function 3

Function 4 Function n…
Similar 

function

Dissimilar 
function

Yu et al., Science (2023)



State-of-the-art enzyme function annotation
(In collaboration with Prof. Huimin Zhao’s lab at University of Illinois)

Yu et al., Science (2023)

Huimin Zhao 

(UIUC ChemE)
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CLEAN annotates understudied enzymes
(In collaboration with Prof. Huimin Zhao’s lab at University of Illinois)

Enzyme SsFIA (UniProt: W0W999)

• In UniProt/TrEMBL: labeled as Fluorinase (EC: 2.5.1.63)

Baseline predictions:

• BLAST: Fluorinase (EC: 2.5.1.63)

• DeepEC: Fluorinase (EC: 2.5.1.63)

• ProtInfer: Fluorinase (EC: 2.5.1.63)

Our predictions:

• Fluorinase (EC: 2.5.1.63)​

• Chlorinase (EC: 2.5.1.94)

• Hydrolase (EC: 3.13.1.8)

Yu et al., Science (2023) 11



Protein function annotation schemes

Enzyme catalysis 

reaction classification

Protein domain 

structure annotations

Protein family

classification

Hierarchical function 

annotation

EC number Gene3D Pfam Gene Ontology

12
Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant



Annotation gap of protein functions

• Databases of protein function annotations follow a long-tail distribution

Enzyme function

(EC number)

Domain structure

(Gene 3D)

Family annotation

(Pfam)
Functional annotation

(Gene Ontology)

• A few function classes are associated with the majority of proteins (‘head classes’), 

while many others are sparsely annotated (‘tail classes’)

Class 

occurrence

13



Unequal representativeness in ML parameter space

Head classes Tail classes
(many samples) (very few samples)

Biased representation space

Most of the model’s “learning capacity” overly focuses

on optimizing prediction accuracy for head classes

Allocating “parameter budget” equally

to all function classes

Biased ML 

model:
What we 

want:

Equally distributed representation

14



MSRep: learning maximally spanning embedding space

Imbalanced data Pretrained protein 

language model 

representations

Projection network Loss Representation space
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𝐿𝑜𝑠𝑠 = 𝐿𝑖𝑛𝑡𝑟𝑎 + β ∙ 𝐿𝑖𝑛𝑡𝑒𝑟

𝐿𝑖𝑛𝑡𝑟𝑎 = ෍

𝑗=1

𝐾
1

𝑛𝑗
𝛾 ෍

𝒙𝑖:𝜓 𝒙𝑖 =𝑗

𝒙𝑖 , 𝝁𝑖
𝒙𝑖 ∙ 𝝁𝑖

𝐿𝑖𝑛𝑡𝑒𝑟 = maxmin𝑖≠𝑗 arccos
𝝁𝑖 − 𝝁𝐶 , 𝝁𝑗 − 𝝁𝐶

𝝁𝑖 − 𝝁𝐶 ∙ 𝝁𝑗 − 𝝁𝐶

Property 1: Class centers are maximally separated. Property 2. Embeddings of the same class collapse to class center.

Final loss:

Luo, Jiaqi, and Yunan Luo. "Learning maximally spanning representations improves protein function annotation." RECOMB, 2025.

Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant



Improved performance across protein function annotation tasks

Enzyme function 

annotation (EC number)

Protein domain structure 

classification (Gene3D)

Protein family 

classification (Pfam)

Gene function annotation 

(Gene ontology)

F
m

a
x

All [0, 30) [30, 100) [100, +∞)

Luo, Jiaqi, and Yunan Luo. "Learning maximally spanning representations improves protein function annotation." RECOMB, 2025.
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• Annotating functions for existing proteins

• Designing protein to achieve novel function

ML Model

Protein sequence 

or structure
Protein function𝑥 → 𝑓𝜃(x) → 𝑦

𝑥 𝑦

ML Model

Protein sequence 

or structure
Protein function

𝑥 𝑦
𝑥∗ ← argmax𝑥𝑓(𝑥)

CLEAN: [Yu et al., Science, 2023]; PenLight: [Luo et al., PSB, 2023]; 

MSRep [Luo et al., RECOMB, 2025]

MODIFY: [Ding et al., Nat Commun, 2024]; 

ConFit: [Zhao et al., RECOMB, 2024]; SPURS: [Li et al., RECOMB, 2025]



Figure: cradle.bio

Coordinate 

= Protein sequence

Elevation 

= “Fitness”
(binding, expression, etc)

How to find functional proteins?

18

Protein fitness landscape



Figure: cradle.bio

How to find functional proteins?
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Protein fitness landscape

?
?

??

Maynard Smith. 

Nature (1970): 563-564.

If evolution is to occur, functional proteins must 

be surrounded by other functional proteins



Protein engineering

MSKCEELFTGVVPIL
MSKGWELFTGVVPIL
MSKGEELFTSVVPIL
MSKGEELFTVVVPIL
MSYGEEVFTGVVPIL
MSKGEFGFAGVVPIL
MDYGEELFTVVVPSL
MSKGWELFTGVAPIL

MSKGEELFTGVVPIL

Sequence Fitness of interest

(e.g., binding affinity, stability, expression)

1.0
0.5
5.4
0.6
1.1
2.5
0.1
1.3
6.1

• Mutagenesis experiments

20



Protein engineering
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Protein engineering

MSKCEELFTGVVPIL
MSKGWELFTGVVPIL
MSKGEELFTSVVPIL
MSKGEELFTVVVPIL
MSYGEEVFTGVVPIL
MSKGEFGFAGVVPIL
MDYGEELFTVVVPSL
MSKGWELFTGVAPIL

MSKGEELFTGVVPIL

Sequence Fitness of interest

(e.g., binding affinity, stability, expression)

1.0
0.5
5.4
0.6
1.1
2.5
0.1
1.3
6.1

• Mutagenesis experiments
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Protein engineering

23

Sequence

Parent

Variant 

pool
Improved 

variants

Directed 

Evolution

Directed evolution for protein engineering

(2018 Nobel Prize in Chemistry)

Frances Arnold 

(Caltech)



ML-guided directed evolution

• Sequence-to-fitness prediction with machine learning

Sequence Fitness

1.0
0.5
5.4
0.6
0.1
1.3
…

MSKGEELFTGVVPIL
MSKCEELFTGVVPIL
MSKGWELFTGVVPIL
MSKGEELFTSVVPIL
MSKGEFGFAGVVPIL
MDYGEELFTVVVPSL

…

ML model

Supervised 

training

MSKGTELFTGVVPIL 0.85

• Small-data (low-N) problem: labeled data is limited in biology

• Experiment data: 101-102 characterized variants

• ML models: often require >105 training samples

24

Sequence Fitness



Our idea: Calibrating PLMs

PLM

x
−

 = ELTAFLKNMGDHV y
−
 = 1.06

P
ro

b
a

b
ili

ty

A R N D C Q E G H I L K M F P S T W Y V

x+ = ELTAFLFNMGDHV y+ = 4.25

PLM’s calibrated probability

• A contrastive learning method:  

Given two samples (𝑥+, 𝑦+) and (𝑥−, 𝑦−). When 

𝑦+ > 𝑦−, we want to have 𝑓𝜃 𝑥+ > 𝑓𝜃 𝑥−

26

Pre-trained 
PLM

Zhao et al., RECOMB (2024)

• Observation: PLM already has strong unsupervised fitness prediction performance 

• Hypothesis: Calibrate PLM with fitness data → more accurate supervised prediction!



Accurate low-N fitness prediction
ConFit outperformed baseline methods across 34 datasets

Unsupervised 

baselines

Supervised 

baselines

27

Ours

Zhao et al., RECOMB (2024)



From general evolutionary landscape to function-specific 
landscapes

General evolutionary 
landscape captured by PLM

Function-specific landscapes

…

ConFit

Function-specific 

fitness data (low-N)

+

Binding affinity Expression Stability Growth rate Catalytic activity

28



Multi-objective protein sequence design
Recent results

Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant 2024



Experimental validation in biocatalysis

Yang Yang (UCSB 

Chemistry)• New-to-nature enzymatic reaction

ACCO

• Two key enzymatic performance metrics:

• Yield

• Selectivity

Work in Progress;

Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant



Experimental validation in biocatalysis

Yang Yang (UCSB 

Chemistry)

Work in Progress;

Supported by GaTech IDEaS x Microsoft CloudHub Seed Grant
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Conclusion

• Protein generative AI models capture evolutionary patterns of functional proteins

• Enhanced protein function annotation

• Enabled the design of novel, diverse functional proteins
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